《【數(shù)學(xué)】322《函數(shù)的和、差、積、商的導(dǎo)數(shù)》課件(蘇教版1-1)》由會員分享,可在線閱讀,更多相關(guān)《【數(shù)學(xué)】322《函數(shù)的和、差、積、商的導(dǎo)數(shù)》課件(蘇教版1-1)(19頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、3.2.2 3.2.2 函數(shù)的函數(shù)的和、差、積、商的導(dǎo)數(shù)和、差、積、商的導(dǎo)數(shù)為常數(shù))(x)x)(2(11)a0,lna(aa)a)(3(xx且1)a, 0a (xlna1)xlog)(4(a且sinx(8)(cosx) e)e)(5(xxx1(6)(lnx) cosx )sinx)(7(基本求導(dǎo)公式基本求導(dǎo)公式: :知識回顧:知識回顧:)(0) 1 (為常數(shù)CC 2 2、由定義求導(dǎo)數(shù)(三步法、由定義求導(dǎo)數(shù)(三步法)步驟步驟: :);()()1(xfxxfy 求增量求增量;)()()2(xxfxxfxy 算比值算比值常數(shù), 0)3(xyx當2)(xxfxxg)(4.4.結(jié)論:結(jié)論: . )()(
2、)(22xxxx)()( )()(xgxfxgxf猜想:猜想:3 3利用導(dǎo)數(shù)定義求利用導(dǎo)數(shù)定義求 的導(dǎo)數(shù)的導(dǎo)數(shù). . xxy212)(2xxxxxxgxf2)()(證明猜想證明猜想).()()()(xgxfxgxf證明:令證明:令 ).()(xgxfy )()()()(xgxfxxgxxfy xxgxxgxfxxfxy)()()()( )()()()(xgxxgxfxxf xxgxxgxxfxxf)()()()()()(xgxf 法則法則1 1: : 兩個函數(shù)的兩個函數(shù)的和(或差)的和(或差)的導(dǎo)數(shù)導(dǎo)數(shù),等于這兩個函數(shù)的導(dǎo)數(shù)的和,等于這兩個函數(shù)的導(dǎo)數(shù)的和(或差),即:(或差),即:).()(
3、)()(xgxfxgxf法則法則2:2:).( )(為常數(shù)CxfCxCf.sin)() 1 (. 12的導(dǎo)數(shù)求函數(shù)例xxxfxxxxxxxfcos2)(sin)()sin()(22解:.2623)()2(23的導(dǎo)數(shù)求函數(shù)xxxxg633)6()23()()623()(22323xxxxxxxxxg解:法則法則3:3:兩個函數(shù)的兩個函數(shù)的積的導(dǎo)數(shù)積的導(dǎo)數(shù),等于,等于第一個函數(shù)的導(dǎo)數(shù)第一個函數(shù)的導(dǎo)數(shù)乘乘以第二個函數(shù)以第二個函數(shù)加加上第一個函數(shù)上第一個函數(shù)乘乘以第二個函數(shù)以第二個函數(shù)的導(dǎo)數(shù)的導(dǎo)數(shù)).()()()( )()(xgxfxgxfxgxf.ln2)()2(.sin)() 1 (2的導(dǎo)數(shù)求函數(shù)
4、的導(dǎo)數(shù)求函數(shù):例xxxfxxxhxxxxxxxxxxhcossin)(sinsin)sin()() 1 ( :解2ln2)(ln2(ln)2()ln2()()2(xxxxxxxxf 的導(dǎo)數(shù)的導(dǎo)數(shù)2)2)3)(3x3)(3x(2x(2xy y用兩種方法求用兩種方法求. .3 32 298182xx解:解:) 23)(32 () 23 ( ) 32 (22xxxxy3)32()23(42 xxx法二:法二:法一:法一:)6946(23xxxy98182xx法則法則4 4 : :兩個函數(shù)的兩個函數(shù)的商的導(dǎo)數(shù)商的導(dǎo)數(shù),等于分,等于分子的導(dǎo)數(shù)與分母的積,減去分母的導(dǎo)數(shù)子的導(dǎo)數(shù)與分母的積,減去分母的導(dǎo)數(shù)與
5、分子的積,再除以分母的平方與分子的積,再除以分母的平方, ,即:即: )()()()()()()(2xgxgxfxgxfxgxf0)(xg其中的的導(dǎo)導(dǎo)數(shù)數(shù)。)求求函函數(shù)數(shù)(的的導(dǎo)導(dǎo)數(shù)數(shù)求求函函數(shù)數(shù)的的導(dǎo)導(dǎo)數(shù)數(shù)求求函函數(shù)數(shù):例例xxcosy3xtany)2(.t1t)t(s)1(32 的導(dǎo)數(shù).ex(4)求函數(shù)f(x)xxxxxxxxxexexeeeexexexxf1)()()()()2( :解22的導(dǎo)數(shù)的導(dǎo)數(shù)4 45x5x3x3x2x2xy y求求1.1.2 23 3練練 習(xí)習(xí)566)4532(:解223xxxxxy的導(dǎo)數(shù)xxysin. 22xxxxxy222sin)(sinsin)(解:xxx
6、xx22sincossin2處的導(dǎo)數(shù)在點求333. 32xxxy222)3(2)3()3(1xxxxy解:222) 3(36xxx61)33(3363)3(,3222fx時當4 4求曲線求曲線y=xy=x3 3+3x+3x8 8在在x=2x=2處的切線的方程處的切線的方程. .02415),2(156:),6 , 2(15323)2(33)83()(:223yxxyfxxxxf即切線方程為又過點解求求函函數(shù)數(shù)的的解解析析式式。的的切切線線方方程程為為處處處處),且且在在點點,(圖圖像像過過的的已已知知函函數(shù)數(shù)例例,07yx6)1(f , 1(M20Pdcxbxx)x(f.423 練練 習(xí)習(xí)1 1求求 的導(dǎo)數(shù)的導(dǎo)數(shù) )11(32xxxxy 3223xxy 2 2求求 的導(dǎo)數(shù)的導(dǎo)數(shù) )11)(1( xxy.1121 xxy