2022年《去分母解一元一次方程》教學(xué)反思
《2022年《去分母解一元一次方程》教學(xué)反思》由會員分享,可在線閱讀,更多相關(guān)《2022年《去分母解一元一次方程》教學(xué)反思(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年《去分母解一元一次方程》教學(xué)反思 2022年《去分母解一元一次方程》教學(xué)反思1(558字) 從學(xué)生的作業(yè)中反饋出:對去分母的第一步還存在較大的問題,是不是說明過程的敘述不太清楚,部分學(xué)生摸棱兩可,真真自己做的時候就會暴露出不懂的,這也提醒我今后的教學(xué)中在關(guān)鍵的知識點上要下“功夫”,切不可輕易的解決問題(想當然)。備課時應(yīng)該多多思考學(xué)生的具體情況,然后再修改初備的教案,盡量完善,盡量完美。 1、去分母后原來的分子沒有添加括號。 例1:解方程。 分數(shù)線實際上包含括號的意思,去分母后原來的分子應(yīng)該添上括號。 2、去分母時最小公倍數(shù)沒有乘到每一項。
2、 例2:解方程。 去分母時最小公倍數(shù)沒有乘到每一項,特別是不含有分數(shù)的項。 3、去括號導(dǎo)致錯誤。 4、運用乘法分配律時,漏乘括號里的項。 例3:解方程。 去括號時沒有把括號外的數(shù)分配到括號中的每一項。 5、括號前面是“-”號時,去括號要使括號里的每一項變號。 2022年《去分母解一元一次方程》教學(xué)反思2(636字) 在學(xué)生學(xué)習(xí)了解一元一次方程一般都采用的五步變形方法以后,這節(jié)課重點探討解下列方程的技巧方法, 如在解方程30%x+70%(200-x)=200×70%中,在去分母時,方程兩邊都乘以100,化去%得: 30x+70(200-
3、x)=200×70,有部分學(xué)生就提出疑問,為什么在200那里不乘以100?在(200-x)的里面又不乘以100呢?為了能讓學(xué)生明白,我想是否要將原方程變形為,然后再各項乘以100,寫成,最后化去分母。 又在解方程中,怎樣去分母呢?最小公倍數(shù)是什么呢?學(xué)生是有疑惑的,當分母是小數(shù)時,找最小公倍數(shù)是困難的,我們要引導(dǎo)學(xué)生: ①把小數(shù)的分母化為整數(shù)的分母。如把方程中的前二項都分別分子分母同乘以10,則二項的分母分別成為5和1,即原方程變形為 ?、谙朕k法將分母變?yōu)?,即把左邊第一項分子、分母都乘以2,右邊第一項分子、分母都乘 10,則三項的分母都為1。原方程變形為2(4x-1.5
4、)=10(1.2-x)+2 又如在解方程中,是先去括號呢,還是先去分母,怎樣計算會簡便些呢? 只要我們善于引導(dǎo)學(xué)生認真觀察,多思考多練習(xí),抓住特點,就能找到一些解方程的技巧方 法。解一元一次方程一般都采用五步變形靈活應(yīng)用,除此之外,據(jù)不同題型,運用一些技巧方法,就能快捷地求出其解。 2022年《去分母解一元一次方程》教學(xué)反思3(401字) 由數(shù)學(xué)文化中的實際問題導(dǎo)入,一個數(shù),它的三分之二,它的二分之一,它的全部,它們總共是33,求這個數(shù)。 師引導(dǎo)學(xué)生分析,設(shè)元,列方程,解方程,作答。 重點分析了如何去分母。可是大部分的學(xué)生不會用短除法找最小公倍數(shù),于是
5、我又給學(xué)生補講短除法。 講完短除法,再講去分母的方法。 去分母,就是根據(jù)等式的性質(zhì)2,在方程兩邊分別乘以最小公倍數(shù)后約去分母。學(xué)生們在去分母過程中,常踩著幾個坑:1,漏乘;2,分子是多項式時忘記加括號。 雖然我一直強調(diào)它們,可是初學(xué)者都常踩著它們。 我想,雖然強調(diào)過,但畢競這些內(nèi)容有些抽象,所以學(xué)生不易習(xí)得。 最終只有通過再針對訓(xùn)練:精講一個例子,再讓生進行只去分母不移項的解一元一次方程的訓(xùn)練,這樣更具有針對性,效果更好。 2022年《去分母解一元一次方程》教學(xué)反思4(601字) 從學(xué)生的作業(yè)中反饋出:對去分母的第一步還存在較大的問題,是不是說明過程的
6、敘述不太清楚,部分學(xué)生摸棱兩可,真真自己做的時候就會暴露出不懂的,這也提醒我今后的教學(xué)中在關(guān)鍵的知識點上要下“功夫”,切不可輕易的解決問題(想當然)。備課時應(yīng)該多多思考學(xué)生的具體情況,然后再修改初備的教案,盡量完善,盡量完美。 在評課中,盡管其他老師沒有多提意見,但我還是感覺到:我講的太多;主動權(quán)還沒有放心大膽地交還給學(xué)生,否則情況會可能會更好。這也是我的缺點,應(yīng)該化大力氣來調(diào)整自己。另外也應(yīng)該不斷地充實自己其他方面地知識,把數(shù)學(xué)課上地生動活潑 1.去分母后原來的分子沒有添加括號 例1解方程: . 分析:分數(shù)線實際上包含括號的意思,去分母后原來的分子應(yīng)該添上括號。
7、 2.去分母時最小公倍數(shù)沒有乘到每一項 例2解方程:. 分析:去分母時最小公倍數(shù)沒有乘到每一項,特別是不含有分數(shù)的項。 3.去括號導(dǎo)致錯誤 4.運用乘法分配律時,漏乘括號里的項。 例3解方程:. 分析:去括號時沒有把括號外的數(shù)分配到括號中的每一項。 5.括號前面是“-”號時,去括號要使括號里的每一項變號。 2022年《去分母解一元一次方程》教學(xué)反思5(1846字) 在前面的學(xué)段中,學(xué)生已學(xué)習(xí)了合并同類項、去括號等整式運算內(nèi)容。解一元一次方程就成為承上啟下的重要內(nèi)容。因此,它既是重點也是難點。我根據(jù)學(xué)生認識規(guī)律和教學(xué)的啟發(fā)性、直觀性和面向全體
8、因材施教等教學(xué)原則,積極創(chuàng)設(shè)新穎的問題情境,以“學(xué)生發(fā)展為本,以活動為主線,以創(chuàng)新為主旨”,采用多媒體教學(xué)等有效手段,以引導(dǎo)法為主,輔之以直觀演示法、討論法,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,激發(fā)學(xué)生的學(xué)習(xí)積極性,使學(xué)生主動參與學(xué)習(xí)的全過程 本節(jié)課由一道著名的求未知數(shù)的問題,得到方程,這個方程的特點就是有些系數(shù)是分數(shù),這時學(xué)生紛紛用合并同類項,把系數(shù)化為1的變形方法來解,但在合并同類項時幾個分數(shù)的求和,有相當一部分學(xué)生會感到困難且容易出錯,再看方程怎樣解呢?學(xué)生困惑了,不知從何處下手了,此時,需要尋求一種新的變形方法來解它求知的欲望出來了,想到了去分母,就是化去分母,把分數(shù)系數(shù)化為整數(shù),
9、使解方程中的計算方便些。 在解方程中去分母時,我發(fā)現(xiàn)存在這樣的一些問題: ① 部分學(xué)生不會找各分母的最小公倍數(shù),這點要適當指導(dǎo), ?、?用各分母的最小公倍數(shù)乘以方程兩邊的項時,漏乘不含分母的項, ?、?當減式中分子是多項式且分母恰好為各分母的最小公倍數(shù)時,去分母后,分子沒有作為一個整體加上括號,容易錯符號。如解方程方程兩邊都乘以10后,得到5×3x +1-10×2 = 3x -2-2× 2x +3 其中3x +1, 2x +3 沒有加括號,弄錯了符號對解題步驟的歸納說法基本一致。就學(xué)生的表達能力還有些欠佳,需要提高語言組織能力。 本節(jié)課習(xí)題設(shè)計的不夠充分,學(xué)生在上課的過程中
10、訓(xùn)練強度達不到,當分母是小數(shù)時,找最小公倍數(shù)是困難的,我們要引導(dǎo)學(xué)生: ①把小數(shù)的分母化為整數(shù)的分母。如 把方程中的前兩項分子、分母同乘以10,或前兩項分母同乘以 ,則兩項的分母分別成為2和5,即原方程變形為整數(shù)。 ?、?想辦法將分母變?yōu)?。等式兩邊同乘以分母的最小公倍數(shù)10。 ?、蹖W(xué)生有疑惑的是先去括號呢,還是先去分母,怎樣計算會簡便些呢? 在本節(jié)課的教學(xué)過程中,我發(fā)現(xiàn)學(xué)生對以上活動都比較感興趣,特別是對討論的環(huán)節(jié)每個學(xué)生都想發(fā)表自己的看法。對解題步驟的歸納說法基本一致,就學(xué)生的表達能力還有些欠佳,需要提高語言組織能力。只要我們善于引導(dǎo)學(xué)生認真觀察,多思考多練習(xí),抓住特點,就能
11、找到一些解方程的技巧方,在以后的教學(xué)中要給學(xué)生準備一部分提高能力的題,達到檢測和拓展數(shù)學(xué)思維的目的。 另外,從學(xué)生的作業(yè)中反饋出:對去分母的第一步還存在較大的問題,是不是說明過程的敘述不太清楚,部分學(xué)生摸棱兩可,真真自己做的時候就會暴露出不懂的,這也提醒我今后的教學(xué)中在關(guān)鍵的知識點上要下“功夫”,切不可輕易的解決問題。備課時應(yīng)該多多思考學(xué)生的具體情況,然后再修改初備的教案,盡量完善,盡量完美。 但我還是感覺到:我講的太多;主動權(quán)還沒有放心大膽地交還給學(xué)生,否則情況會可能會更好。這也是我的缺點,應(yīng)該化大力氣來調(diào)整自己。另外也應(yīng)該不斷地充實自己其他方面地知識,把數(shù)學(xué)課上地生動活潑。
12、 (1)基本體現(xiàn)自主探究教學(xué)模式,逐步引導(dǎo)學(xué)生學(xué)習(xí)。 ?。?)對學(xué)情分析不準確,本來認為學(xué)生對工程問題會掌握的很好,不會出現(xiàn)問題,課堂會相對很輕松,但結(jié)果是學(xué)生早就忘了工程問題中的基本數(shù)量關(guān)系,復(fù)習(xí)2的填空都不能完成,嚴重影響了后續(xù)知識的學(xué)習(xí)。教師在課上臨時調(diào)節(jié)不到位,使一堂本應(yīng)輕松的課變得沉悶、不能有效推進。 (3)從學(xué)習(xí)有效性考慮,對教學(xué)設(shè)計可做如下改進,一是復(fù)習(xí)中工程問題可利用例題分解完成,這樣可以為例題做鋪墊,提高審題效率,降低學(xué)習(xí)難度,使例題學(xué)習(xí)更順暢。二是例題后的變式,一道是在例題基礎(chǔ)上的變結(jié)論題,另一道是單獨的一道題,但是條件與例題有變化。此題不如在例題基礎(chǔ)上直接變條
13、件,節(jié)省審題時間,讓學(xué)生充分體會工程問題中的數(shù)量關(guān)系的變化規(guī)律,提高學(xué)習(xí)效率。 ?。?)教學(xué)方法要改進,學(xué)生學(xué)習(xí)困難時研討是必要的,但不是所有問題研討都可以得出結(jié)論,所以教師點撥的作用要適時體現(xiàn)。如,學(xué)生對工程問題中的相等關(guān)系認識有困難時,教師可以通過力求方法表示整體1與各部分關(guān)系,這樣學(xué)生可以很輕松理解。 2022年《去分母解一元一次方程》教學(xué)反思6(1145字) 本節(jié)課由一道著名的求未知數(shù)的問題,得到方程,這個方程的特點就是有些系數(shù)是分數(shù),這時學(xué)生紛紛用合并同類項,把系數(shù)化為1的變形方法來解,但在合并同類項時幾個分數(shù)的求和,有相當一部分學(xué)生會感到困難且容易出錯,再看方程怎樣
14、解呢?學(xué)生困惑了,不知從何處下手了,此時,需要尋求一種新的變形方法來解它求知的欲望出來了,想到了去分母,就是化去分母,把分數(shù)系數(shù)化為整數(shù),使解方程中的計算方便些。 在解方程中去分母時,我發(fā)現(xiàn)存在這樣的一些問題: 1、部分學(xué)生不會找各分母的最小公倍數(shù),這點要適當指導(dǎo)。 2、用各分母的最小公倍數(shù)乘以方程兩邊的項時,漏乘不含分母的項。 3、當減式中分子是多項式且分母恰好為各分母的最小公倍數(shù)時,去分母后,分子沒有作為一個整體加上括號,容易錯符號。如解方程方程兩邊都乘以10后,得到5×3x+1-10×2=3x-2-2×2x+3其中3x+1,2x+3沒有加括號,弄錯了符號對解題步驟的歸納
15、說法基本一致。就學(xué)生的表達能力還有些欠佳,需要提高語言組織能力。 本節(jié)課習(xí)題設(shè)計的不夠充分,學(xué)生在上課的過程中訓(xùn)練強度達不到,當分母是小數(shù)時,找最小公倍數(shù)是困難的,我們要引導(dǎo)學(xué)生: 1、把小數(shù)的分母化為整數(shù)的分母。如把方程中的前兩項分子、分母同乘以10,或前兩項分母同乘以 ,則兩項的分母分別成為2和5,即原方程變形為整數(shù)。 2、想辦法將分母變?yōu)?。等式兩邊同乘以分母的最小公倍數(shù)10。 3、學(xué)生有疑惑的是先去括號呢,還是先去分母,怎樣計算會簡便些呢? 在本節(jié)課的教學(xué)過程中,我發(fā)現(xiàn)學(xué)生對以上活動都比較感興趣,特別是對討論的環(huán)節(jié)每個學(xué)生都想發(fā)表自己的看法。對解題步驟的歸
16、納說法基本一致,就學(xué)生的表達能力還有些欠佳,需要提高語言組織能力。只要我們善于引導(dǎo)學(xué)生認真觀察,多思考多練習(xí),抓住特點,就能找到一些解方程的技巧方,在以后的教學(xué)中要給學(xué)生準備一部分提高能力的題,達到檢測和拓展數(shù)學(xué)思維的目的。 另外,從學(xué)生的作業(yè)中反饋出:對去分母的第一步還存在較大的問題,是不是說明過程的敘述不太清楚,部分學(xué)生摸棱兩可,真真自己做的時候就會暴露出不懂的,這也提醒我今后的教學(xué)中在關(guān)鍵的知識點上要下“功夫”,切不可輕易的解決問題。備課時應(yīng)該多多思考學(xué)生的具體情況,然后再修改初備的教案,盡量完善,盡量完美。 但我還是感覺到:我講的太多;主動權(quán)還沒有放心大膽地交還給學(xué)生,否則
17、情況會可能會更好。這也是我的缺點,應(yīng)該化大力氣來調(diào)整自己。另外也應(yīng)該不斷地充實自己其他方面地知識,把數(shù)學(xué)課上地生動活潑。 2022年《去分母解一元一次方程》教學(xué)反思7(620字) 通過上節(jié)課學(xué)習(xí)后,學(xué)生已經(jīng)掌握了用去括號、移項、合并同類項、把系數(shù)化為1這四個步驟解一元一次方程。 接下來這一節(jié)課,我們要重點討論是; ?、俳夥匠讨械摹叭シ帜浮?, ?、诟鶕?jù)實際問題列方程。這樣我們就掌握了解一元一次方程一般都采用的五步變形方法。 由一道著名的求未知數(shù)的問題,得到方程,這個方程的特點就是有些系數(shù)是分數(shù),這時學(xué)生紛紛用合并同類項,把系數(shù)化為1的變形方法來解,但在合并同類項時
18、幾個分數(shù)的求和,有相當一部分學(xué)生會感到困難且容易出錯,再看方程 怎樣解呢?學(xué)生困惑了,不知從何處下手了,此時,需要尋求一種新的變形方法來解它,求知的欲望出來了,想到了去分母,就是化去分母,把分數(shù)系數(shù)化為整數(shù),使解方程中的計算方便些。 在解方程中去分母時,我們發(fā)現(xiàn)存在這樣的一些問題: ①部分學(xué)生不會找各分母的最小公倍數(shù),這點要適當指導(dǎo), ?、谟酶鞣帜傅淖钚」稊?shù)乘以方程兩邊的項時,漏乘不含分母的項, ?、郛敎p式中分子是多項式且分母恰好為各分母的最小公倍數(shù)時,去分母后,分子沒有作為一個整體加上括號,容易錯符號。如解方程方程兩邊都乘以2后,得到2x-x+2=2,其中x+2沒
19、有加括號,弄錯了符號。 2022年《去分母解一元一次方程》教學(xué)反思8(1765字) 這點要適當指導(dǎo),② 用各分母的最小公倍數(shù)乘以方程兩邊的項時,漏乘不含分母的項,③ 當減式中分子是多項式且分母恰好為各分母的最小公倍數(shù)時,去分母后,分子沒有作為一個整體加上括號,容易錯符號。如解方程方程兩邊都乘以10后,得到 5×3x +1-10×2 = 3x -2-2× 2x +3其中3x +1, 2x +3 沒有加括號,弄錯了符號對解題步驟的'歸納說法基本一致。就學(xué)生的表達能力還有些欠佳,需要提高語言組織能力。 本節(jié)課習(xí)題設(shè)計的不夠充分,學(xué)生在上課的過程中訓(xùn)練強度達不到,當分母是小數(shù)時,找最
20、小公倍數(shù)是困難的,我們要引導(dǎo)學(xué)生: ?、侔研?shù)的分母化為整數(shù)的分母。如 把方程中的前兩項分子、分母同乘以10,或前兩項分母同乘以 ,則兩項的分母分別成為2和5,即原方程變形為整數(shù)。 ?、谙朕k法將分母變?yōu)?。等式兩邊同乘以分母的最小公倍數(shù)10。 ?、蹖W(xué)生有疑惑的是先去括號呢,還是先去分母,怎樣計算會簡便些呢? 在 本節(jié)課的教學(xué)過程中,我發(fā)現(xiàn)學(xué)生對以上活動都比較感興趣,特別是對討論的環(huán)節(jié)每個學(xué)生都想發(fā)表自己的看法。對解題步驟的歸納說法基本一致,就學(xué)生的表達能 力還有些欠佳,需要提高語言組織能力。只要我們善于引導(dǎo)學(xué)生認真觀察,多思考多練習(xí),抓住特點,就能找到一些解方程的技巧方,在以
21、后的教學(xué)中要給學(xué)生準備 一部分提高能力的題,達到檢測和拓展數(shù)學(xué)思維的目的。 另外,從學(xué)生的作業(yè)中反饋出:對去分母的第一步還存在較大的問題,是不是說 明過程的敘述不太清楚,部分學(xué)生摸棱兩可,真真自己做的時候就會暴露出不懂的,這也提醒我今后的教學(xué)中在關(guān)鍵的知識點上要下“功夫”,切不可輕易的解決問 題。備課時應(yīng)該多多思考學(xué)生的具體情況,然后再修改初備的教案,盡量完善,盡量完美。 但我還是感覺到:我講的太多;主動權(quán)還沒有放心大膽地交還給學(xué)生,否則情況會可能會更好。這也是我的缺點,應(yīng)該化大力氣來調(diào)整自己。另外也應(yīng)該不斷地充實自己其他方面地知識,把數(shù)學(xué)課上地生動活潑。 反思五:解一元一次
22、方程——去分母教學(xué)反思 本節(jié)課是在學(xué)習(xí)了一元一次方程解法的基礎(chǔ)上學(xué)習(xí)的,它與前面所學(xué)的知識之間有著緊密的聯(lián)系,學(xué)生在學(xué)習(xí)本節(jié)課之后會初步了解了“建?!钡臄?shù)學(xué)思想及基本步驟。因此本節(jié)內(nèi)容的教學(xué)首先復(fù)習(xí)一元一次方程解法的步驟,通過把實際問題用一元一次方程的解決,不僅鞏固了一元一次方程的解法,并且加深了對“建模”思想的理解。 本節(jié)課的設(shè)計思路是從實際問題出發(fā),引導(dǎo)學(xué)生自主學(xué)習(xí),積極探究,合作交流,總結(jié)提高。用列方程的方法解決實際問題,在教學(xué)過程中通過連串問題去引導(dǎo)學(xué)生審題、分析題意、尋找等量關(guān)系等,使學(xué)生初步了解“建?!钡臄?shù)學(xué)思想。在課堂中讓學(xué)生帶著思考,帶著問題,教師組織學(xué)生討論的目的
23、是為了充分暴露出學(xué)生的問題,讓學(xué)生在談?wù)摗⒑献?、交流的過程中解決問題,在通過老師的總結(jié)歸納,學(xué)生的認識得到升華,因此本節(jié)課采取的是學(xué)生合作探究的教學(xué)方法。 在教學(xué)過程中,教師不斷地提出問題,明確要達到的目的,并在學(xué)生遇到困難的時候提供指導(dǎo)性建議,但不提供具體的解決過程和問題的答案。學(xué)生則圍繞確定的問題,在教師的指導(dǎo)性幫助下,通過自己的思考和相互間的交流,達到預(yù)定的目標。 顯然,這樣的教學(xué)給學(xué)生帶來的發(fā)展是多方面、多層次的,不同的學(xué)生在學(xué)習(xí)過程中都有不同程度的收獲。 這節(jié)課學(xué)生大多能積極思考,認真學(xué)習(xí),課后作業(yè)都能及時完成。作業(yè)質(zhì)量較好,基本達到了預(yù)定的教學(xué)目標,主要存在問題是
24、去括號時個別同學(xué)不注意符號或出現(xiàn)漏乘情況。 上了這節(jié)課,我覺得上好一節(jié)課的因素很多,也發(fā)現(xiàn)了自己很多不足的地方,在平時上課的時候,對提問的形式和語言還嫌單一。在現(xiàn)行的開放式的課堂中,關(guān)鍵是放的出去的同時要收的回來,可能是平時注入式的簡單易行,或者是不大重視,上課中的語言的漏洞很多,在以后的教學(xué)中要多加揣摩和重視,多點聽其他老師的課,盡量把他們對課堂教學(xué)處理的優(yōu)點溶進自己的教學(xué)中,進一步提高自己的教育教學(xué)水平。 2022年《去分母解一元一次方程》教學(xué)反思9(814字) 本節(jié)課的重點是討論解一元一次方程中的去分母,此節(jié)課后就可以解各種各樣的一元一次方程,并可以歸納出解一元一次方程
25、的一般步驟。這節(jié)課從古代埃及的紙莎草文書中的一道題切入,引出帶有分母的一元一次方程,進而討論解這類方程的方法。這個問題是:一個數(shù),它的三分之二,它的一半,它的七分之一,它的全部,加起來總共是33。求這個數(shù)。 這節(jié)課講過之后,我覺得成功之處是:歸納出解一元一次方程的一般步驟之后,我寫到黑板上四道題,讓四位學(xué)生做到黑板上,其他學(xué)生做到練習(xí)本上。做完后,再選四位學(xué)生上去改并且講評。這樣一做一改,這幾位學(xué)生都對易錯處印象深刻,做錯題目的學(xué)生再讓他們結(jié)合自己做的題,說說自己容易在哪個步驟出錯。然后再集體進行總結(jié),去分母是什么地方易錯,去括號什么地方易錯。這樣的訓(xùn)練之后,我覺得這一屆的學(xué)生解方程掌握
26、的比以前的學(xué)生好。我想,這正是新課改倡導(dǎo)的精神,讓學(xué)生自己動手做,思考,歸納,總結(jié),最后變成了自己的東西,不易忘記。 這節(jié)課的不足之處在于:這節(jié)課從古埃及的紙莎草文書引入,這是能反映古埃及文明的一件珍貴文物,這個選材可以起到介紹悠久的數(shù)學(xué)文明的作用,可以讓學(xué)生感受到數(shù)學(xué)文化的熏陶,而我當時一帶而過,只讓學(xué)生自己看了看文字,忽視了對學(xué)生情感價值觀的教育。 其次,方程列出后,我提出問題,引導(dǎo)學(xué)生來思考怎樣把方程簡化,化成能夠解決的一元一次方程,但給學(xué)生留下的思維空間較少。有幾個思維敏捷的學(xué)生很快想到了解決問題的方法,我就沒有等更多的學(xué)生深入思考,自己得出結(jié)論。這樣造成多數(shù)學(xué)生跟著少數(shù)學(xué)
27、生思維跑的局面,忽視了大部分學(xué)生思考---得出結(jié)論---體驗成功的過程,只照顧了少部分學(xué)生,這會導(dǎo)致數(shù)學(xué)的兩極分化。一部分學(xué)生總是體驗不到自己經(jīng)過認真思考,得出結(jié)論的成就感,慢慢會失去學(xué)習(xí)興趣。這是我今后應(yīng)該努力解決的問題。 2022年《去分母解一元一次方程》教學(xué)反思10(592字) 通過上節(jié)課學(xué)習(xí)后,學(xué)生已經(jīng)掌握了用去括號、移項、合并同類項、把系數(shù)化為1這四個步驟解一元一次方程,接下來這一節(jié)課,我們要重點討論是: ?。?)解方程中的“去分母”。 ?。?)根據(jù)實際問題列方程。這樣我們就掌握了解一元一次方程一般都采用的五步變形方法。 由一道著名的求未知數(shù)的問題,得到方程
28、,這個方程的特點就是有些系數(shù)是分數(shù),這時學(xué)生紛紛用合并同類項,把系數(shù)化為1的變形方法來解,但在合并同類項時幾個分數(shù)的求和,有相當一部分學(xué)生會感到困難且容易出錯,再看方程 怎樣解呢?學(xué)生困惑了,不知從何處下手了,此時,需要尋求一種新的變形方法來解它,求知的欲望出來了,想到了去分母,就是化去分母,把分數(shù)系數(shù)化為整數(shù),使解方程中的計算方便些。 在解方程中去分母時,我們發(fā)現(xiàn)存在這樣的一些問題: (1)部分學(xué)生不會找各分母的最小公倍數(shù),這點要適當指導(dǎo)。 ?。?)用各分母的最小公倍數(shù)乘以方程兩邊的項時,漏乘不含分母的項。 ?。?)當減式中分子是多項式且分母恰好為各分母的最小公倍數(shù)時,去分母后,分子沒有作為一個整體加上括號,容易錯符號。如解方程方程兩邊都乘以2后,得到2x—x+2=2,其中x+2沒有加括號,弄錯了符號。
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 市教育局冬季運動會安全工作預(yù)案
- 2024年秋季《思想道德與法治》大作業(yè)及答案3套試卷
- 2024年教師年度考核表個人工作總結(jié)(可編輯)
- 2024年xx村兩委涉案資金退還保證書
- 2024年憲法宣傳周活動總結(jié)+在機關(guān)“弘揚憲法精神推動發(fā)改工作高質(zhì)量發(fā)展”專題宣講報告會上的講話
- 2024年XX村合作社年報總結(jié)
- 2024-2025年秋季第一學(xué)期初中歷史上冊教研組工作總結(jié)
- 2024年小學(xué)高級教師年終工作總結(jié)匯報
- 2024-2025年秋季第一學(xué)期初中物理上冊教研組工作總結(jié)
- 2024年xx鎮(zhèn)交通年度總結(jié)
- 2024-2025年秋季第一學(xué)期小學(xué)語文教師工作總結(jié)
- 2024年XX村陳規(guī)陋習(xí)整治報告
- 2025年學(xué)校元旦迎新盛典活動策劃方案
- 2024年學(xué)校周邊安全隱患自查報告
- 2024年XX鎮(zhèn)農(nóng)村規(guī)劃管控述職報告