購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
Electronic Unit Pump Diesel Engine Control Unit Design for
Integrated Powertrain System
DU Wei, ZHAO Fu tang
(School of Mechanical and Vehicular Engineering,Beijing Institute of Technology,Beijing 100081,China)
Abstract:The performance of the electronic unit pump(EUP)diesel engine is studied,it will be used in the integrated powertrain and its multi parameters are controllable. Both the theoretical analysis and experiment research are taken. A control unit f0r the fuel quantity and timing in crankshaft domain is designed on this basis and the engine experiment test has been done.For the constant speed camshaft driving EUP system. The fuel quantity will increase as the supply angle goes up and injection timing has no effect. The control precision can reach 1CA.The full injection timing MAP and engine peak performance corves are ℃made successfu11
Key words:electronic unit pump(EUP)diesel engine;integrated powertrain;electronic control unit.
An integrated powertrain system means that the engine and the transmission should be treated as a whole.Both design method and control system deve1opment should be organized together. Generally,the best engine working points are chosen as the gearshift moment for either vehicle fuel economy or power performance. On the other hand,some researches have focused on active engine control during gear shifting. In this paper a powertrain composed of an electronic unit pump(EUP) diesel engine and an electronic automatic transmission(EAT) is studied.The controller of both the power unit and the transmission wil1 be developed and calibrated to make the engine and the transmission work rightly.
To implement the operation mentioned above,as a power unit the EUP diesel engine is suitable because its injection quantity and timing are freely controllable.Based on these,some properties of the engine can be user-defined,such as the peak power curve,speed regulate mode, torque reserve coefficient etc.which is quite useful for the integrated contro1.
1. EUP Control Method
The fuel injection quantity and timing control are the most important aspects to engine control unit.While the control precision is guaranteed, the resource of the system shouldn’t be expended much.
The sensor mounted on the camshaft is used for stroke judgement.The signal from crankshaft is the measure reference mark of both fuel quantity and timing.Configurable timer module (CTM)and time processor unit(TPU)of the micro-controller unit (MCU)are utilized.When a CTM interrupt is triggered by the camshaft,it means that the compress stroke will come and the control unit should prepare for fuel supply.The crankshaft signal is connected to a channel of TPU that uses the PMM function.The PMM function detects a missing transition and marks the teeth number.If there exists z teeth,the span is obviously .
The control pulse is generated by PSP function combining with PMM.The PSP has two operating modes: angle-angle and angle-time. In angle-angle
mode,the rising and failing edges of the output pulse are determined independently of each other.In angle-time mode,the failing edge of the output pulse is determined in reference to the rising edge.The control parameters are ANGLE1 (start angle), RATIO1(multiple ratio1). The injection duration is decided by the last two parameters combined with the former part.We use angle-angle mode that is similar to the engine working process.
The algorithm of injection quantity and timing is the best technique to guarantee the control accuracy.The angle number is an integer and the ratio is the proportion of 0×80(hexadecima1).For example,if the span is 10CA.the resolution will be 0.1CA,which is good enough for fuel injection system.The detailed deduction could be expressed as:
2 EUP Properties Research
2.1 Injection Time Delay
There exists a time delay of fuel injection.At the point of start of injection(SOI),a drive signal is imposed on the EUP.The fue1 wil1 be injected after a short period Td that is called delay.As the EUP is a compound system,which is composed of electric,hydraulic and mechanical components,so that the delay also has those three elements[3]. This is quite meaningful for control system design for the drive pulse minus the delay part is effective for fuel quantity contro1.We get the delay by means of a piezocrystal sensot, which is mounted on the high-pressure fuel pipe near the injector.As shown in Fig.2, in the wave-form of pipe vibration there is a saltation point, at that time the fuel has been delivered to the injector. We test the delay at different engine speeds, which has clearly shown the relationship of delay angle vs engine speed. It is a nonlinear curve that the slope is big at lower engine speed and is getting small as the engine goes to a higher speed.
2.2 Fuel Quantity and Engine Speed
2.2 Fuel Quantity and Engine Speed
In a definitely period of time, the fuel quantity delivered to the cylinder is decided by both the pressure change rate and the backward fuel mass rate.For the latter the fuel return is treated assembly as a pressure relief valve and we have
where is the flow coefficient of the return orifice; is its section area;Po is the pressure before the orifice or we call it upstream pressure;Pc is the fuel
return control pressure by which the backward fuel flow rate through a spring is controllable.
When the engine speed goes higher the pressure before orifice increases while the return control pressure is still changeless.This will make the backward fuel mass rate higher.The other important thing is that the phenomenon of pressure hysteresis which is the pressure drop in the pipe costs time.The time span even will go longer as the engine speed goes up,which also makes the return fuel increase. Here we meter the fuel by the crank angle,so we have the test results in Fig.3.In Fig.3 the fuel quantity increases linearly with the fuel supply angle and the high speed one in the low position means for the same fuel injection duration the fuel mass under lower speed is more than that under higher speed. refers to the fuel quantities per cycle.
2.3 Injection Timing
Injection timing is critical for engine control considering that it affects both the fuel economy and emission performance.We also investigate the effect of injection timing on the fuel quantity under the same supply angle.The pressure change rate of the unit plunge pump is expressed as [5].
where is the isothermal elastic modulus of the fuel; is the lift of the plunge while V and are their volume and cross section area.
From the equation we can tell that if the mass change rate is invariable only the plunge lift speed will affect the pressure change rate.Here we use a constant slope profiled camshaft as the drive.So as the fuel supply angle increases the fuel quantity will change linearly and fuel injection timing will have no effect on the fuel quantity for no matter where injection starts.We got this in Fig.4 from which it is
clearly shown that the fuel quantity is linearly increased and different injection time curves cannot change this trend. As a result, such a kind of camshaft will make the control unit design easier.Meanwhile to meet the more stringent emission regulations,the cam profile maybe need some change for good injection rate shaping.This is still in researching.
3 Experiment Research
Experiment research has been done on a fourcylinder turbocharged diesel engine.
It is known that the super high pressure injection system—EUP has a potential to satisfy EURO Ⅱ emission standard and even to meet EURO Ⅲ.The calibration work of the system is important. So at first,an injection timing map is made point by point
considering both fuel economy and emission property.A certain working state(1400r/mm,320N/m)is selected to sample this.The angle of start injection is added step by step and it is found that NO emits more while fuel economy and exhaust temperature change less. That will decrease the emission to the opposite trend,but the angle could not be too small that will make the fuel burning after the TDC. If this happened both the fuel economy and exhaust temperature will be worse.
According to this rule we make a fuel injection timing map.Fig.5 shows that the start injection angle will increase when the engine speed goes up;this is just because the mixture preparation and burning time will be long.The loads have less effect compared with the speed and we only suspend the angle in middle load area and 1400-1800 r·min engine speed.This is so called common use area of heavy diesel engine in EURO II test procedure.
First we work some part load curves out.We find that the injection pulse is linear with the supply angle and the power equably while the injection timing angle can be operated freely.Finally we make the full load or the peak power curves in Fig.6.For the speed stabilization consideration we invalidate the fan silicon clutch, which will make the fuel economy 10g/(kw·h) more than the actual value.The high pressure makes the injection duration less.We can see the maximum angle is 30CA of the rated point including injection delay that property is beneficia1 to future high speed and heavy duty diesel engine.By the online calibration tool-CUCAS (common used calibration system) we have developed.the rated power curve,the slop of speed regulate,the torque reserve coefficient can be defined freely for different purposes of use.For the fuel injection timing can be controlled,as you want at any points,all this make the integrated control meaningfu1.In other words,the active control of engine during transmission period promotes the quality of gearshift itself.
4 Conclusions
Based on all the research work mentioned above,we have the following conclusions
1 Mounting the EUP on the diesel engine would make the engines fuel quantity and timing contro11able.As it is used as the power unit of the integrated powertrain,more parameters can be operated.
2 Mounting the EUP on the diesel engine would make the engines fuel quantity and timing control 1able.As it is used as the power unit of the integrated powertrain,more parameters can be operated.
References:
[1] Hong Keum—Shik,Yang Kyung—Jinn,Lee Kyo-II.An object—oriented modular simulation model for integrated gasoline engine and automatic transmission control[R].
SAE 1999—01—0750,1999
[2] Pettersson Magnus,Nielsen Lars.Gear shifting by engine control[J].IEEE Transactions on Control Systems Technology,2000,8(3):495—507.
[3] Zhang Jingguo,Chen Bing, Wang Zhi gang,et a1.Experimental research on performance of great flow rate and high speed solenoid valve used for electronically controlled
diesel engine[J].Transactions of CSICE,2003。21(3):252—256.(in Chinese)
[4] Liu Bolan.Electronic unit pump diesel engine control system research and development based on RTOS theory [D].Beijing:School of Mechanical and Vehicular Engineering,Beijing Institute of Technology,2003.(in Chinese)
[5] Duleba G S,Ginsburg C W , Harrison J E.Hydraulic system modeling, steady-state analysis simulation and control system analysis using a lumped mass approach[M].[s.1.]:[s.n.],1994.1—11
[6] Mori K .Worldwide trends in heavy—Duty diesel engine exhaust emission legislation and compliance technologies [R].SAE 970753,1997.
武漢工業(yè)學院畢業(yè)設(shè)計說明書
目 錄
中文摘要……………………………………………………………………………1
Abstract ……………………………………………………………………………2
1 燃油系統(tǒng)的組成和要求 ………………………………………………………1
1.1 燃油供給系統(tǒng)的分類 ………………………………………………………1
1.2 燃油供給系統(tǒng)的基本性能指標 ……………………………………………1
1.3 燃油供給系統(tǒng)地組成 ……………………………………………………… 1
1.4 燃油供給系統(tǒng)的基本功用及要求……………………………………………1
2 閉式柴油機噴油器的結(jié)構(gòu)和工作原理…………………………………………3
2.1 噴油器的結(jié)構(gòu)分類 …………………………………………………………3
2.2 閉式噴油器的結(jié)構(gòu) …………………………………………………………3
2.3 噴油器的功用…………………………………………………………………5
2.3.1 噴霧作用…………………………………………………………………5
2.3.2 定時作用 ………………………………………………………………5
2.3.3 壓力控制 ………………………………………………………………5
2.3.4 計量作用…………………………………………………………………5
3 噴油器與燃燒室的匹配…………………………………………………………6
3.1 開式燃燒室與噴油器的匹配………………………………………………6
3.2 半分開式燃燒室與噴油器的匹配…………………………………………7
3.2.1 噴油嘴的凸出高度……………………………………………………7
3.2.2 噴油器相對于氣缸中心線的偏移……………………………………8
3.2.3噴油器的安裝斜角 …………………………………………………8
3.2.4 噴孔的位置……………………………………………………………9
3.2.5 噴孔參數(shù)的選配 …^…………………………………………………10
3.3 低慣量多孔式噴油器的優(yōu)點 ……………………………………………10
3.4 噴油器設(shè)計的其他問題 …………………………………………………11
3.4.1 燃油流道 ……………………………………………………………11
3.4.2 燃油倒流 ……………………………………………………………12
3.4.3 噴油嘴熱負荷 ………………………………………………………12
4. 多孔式噴油嘴噴孔參數(shù)的選擇和噴油器體設(shè)計……………………………13
4.1 噴孔總截面積 …………………………………………………………13
4.2 噴孔直徑與孔數(shù) …………………………………………………………14
4.3 多孔噴油嘴的最小流通截面 ……………………………………………15
4.4 座面應力 …………………………………………………………………16
4.5 針閥關(guān)閉時間的計算……………………………………………………18
4.6 噴油器調(diào)壓彈簧的計算…………………………………………………19
4.6.1 應力校核……………………………………………………………20
4.6.2 材料的選擇與熱處理………………………………………………21
4.7漏油量的計算 ……………………………………………………………21
附表………………………………………………………………………………23
結(jié)論………………………………………………………………………………24
謝詞………………………………………………………………………………25
參考文獻…………………………………………………………………………26
武漢工業(yè)學院畢業(yè)設(shè)計(論文)課題申報表
課題名稱
柴油機P型噴油器設(shè)計
課題類型
設(shè)計
課題來源
自選
導師姓名
熊烈強
職稱
副教授
有否科研背景
有
有否實際工程背景
有
所在單位
機械工程系
所學專業(yè)
輪機工程
上機時數(shù)
24(小時)
目的要求
噴油器是影響柴油機設(shè)計指標和使用性能的關(guān)鍵部件之一。它決定噴霧質(zhì)量、油束與燃燒室的配合,影響噴油特性和柴油機排放。在不同的應用領(lǐng)域,對排放要求不同。
本課題完成滿足歐Ⅱ排放標準的噴油器設(shè)計。
主要內(nèi)容
1、 了解柴油機的工作原理和結(jié)構(gòu),噴油器在柴油機中的作用。
2、 了解歐Ⅱ排放標準。
3、 P型噴油器總體設(shè)計及部分零件圖。
預期
目標
l 噴油器總裝圖
l 噴油器各零件圖
l 設(shè)計說明書
教研室審查小組意見
本課題能否滿足綜合訓練學生的教學要求
課題中有無基本工程訓練內(nèi)容,份量多大(限于理工專業(yè))
本課題的要求、任務、內(nèi)容是否明確、具體
進行本課題現(xiàn)有實施條件是否具備
工作量是否飽滿,課題難度是否適中
進行本課題尚缺的條件本單位能否解決
對本課題的評審結(jié)論:
教研室主任(簽字):
200 年 月 日
院系審定意見
院長(系主任)(簽字):
200 年 月 日
武漢工業(yè)學院英文文獻翻譯
柴油機電控燃油動力系統(tǒng)設(shè)計
趙福堂 杜偉
(北京工程協(xié)會,北京車輛工程學校,100081,北京)
摘要:柴油機電控燃油泵將用于柴油機綜合動力系和多參數(shù)控制。理論分析證明,在曲軸轉(zhuǎn)角的范圍內(nèi)對燃料噴射量進行設(shè)計,此設(shè)計是在發(fā)動機的測量和試驗之后進行的。等速凸輪軸傳動裝置對EUP系統(tǒng)燃料噴射量的提前角和噴射時間是沒有影響的。其控制精度完全能夠滿足噴油時間圖譜和發(fā)動機最大輸出功率的要求。
關(guān)鍵詞:柴油機電子組合泵、綜合傳動、電控部件。
綜合動力系統(tǒng)是指發(fā)動機和傳動部件為一個整體。設(shè)計方法和控制系統(tǒng)要統(tǒng)一考慮,很顯然,發(fā)動機的作用一方面是輸出最大扭矩并節(jié)約燃料和動力輸出。另一方面研究集中在發(fā)動機換檔期間,由柴油機電子單元泵和自動變速器組成的自動控制部分。控制器動力裝置傳動的發(fā)展和發(fā)動機動力輸出的精確調(diào)校。
柴油機的動力裝置是在適當?shù)臅r間噴射適量的燃油進入燃燒室,發(fā)動機性能的定義就是依此為基礎(chǔ)的。例如:功率曲線、速度調(diào)節(jié)、扭矩儲備系數(shù)等等。
1 EUP控制方法
燃料噴射時時控制系統(tǒng)最重要的是發(fā)動機操控單元,它保障控制精度來達到
能量消耗最少的要求。
傳感器的信號是來自對凸輪軸位置的檢測,信號是對曲軸測量參數(shù),即噴油量和噴油時間的關(guān)系。微型調(diào)速器(MCU)是由計時器結(jié)構(gòu)模塊(CTM)和定時處理部件(TPU)控制的。當計時器結(jié)構(gòu)模塊被凸輪軸觸發(fā)器中斷,控制部件將為燃料供給系統(tǒng)作出相應的反應,集中維護模塊中的曲軸信號連接定時處理部件(TPU),集中維護模塊檢測出一個脈沖和齒數(shù)。如果存才Z個齒,那么跨度就是。
脈沖式控制器由PSP和PMM相結(jié)合發(fā)出的,PSP有兩種工作方式,角—角、角—時間,在角—角工作模式中,上升沿和下降沿的輸出脈沖與兩者沒有關(guān)系。在角—時間工作模式中,下降沿的輸出脈沖取決于上升沿,其控制參數(shù)是ANGLE1開始角和ANGLE1結(jié)束角。噴油時間是由EUP的兩個參數(shù)控制。噴射時間取決于以上兩個參數(shù)的位置結(jié)合。我們使用的是角—角工作模式來對發(fā)動機工作的控制。
圖1-1 邏輯控制電路控制噴射量和噴射時間圖
對于噴油量和噴油時間的計算方法是保證提前角的控制精度,角度應是個整數(shù),并且與十六進制成比例。例如:一個距離是,那么結(jié)果就是。關(guān)于合適的燃料噴射系統(tǒng),通常用下面公式表示:
2 EUP的研究
2.1 噴射時間的延遲
一個燃料噴射延遲的開始位置是由EUP發(fā)出的驅(qū)動信號來控制的,燃料的
噴射在一個短期內(nèi)的倍增稱之為噴射延遲。EUP是一個復雜的控制系統(tǒng),由電子單元、液壓、機械部件組成,所以這個延遲是三元化的。這意味著控制系統(tǒng)的設(shè)計是由驅(qū)動脈沖延遲部分來對噴射量進行有效控制,延遲是由一個壓電晶體傳感器來控制的,它位于高壓油管上,例如圖2-1,燃油噴射時間由噴射器控制,延遲在不同的發(fā)動機轉(zhuǎn)速下進行試驗,用延遲角表示。發(fā)動機在較高的轉(zhuǎn)速下運轉(zhuǎn)時則是一條非線性的曲線,發(fā)動機在低速時的曲線斜率較大。
圖2-1 噴射延遲波形
2.2 噴油量和發(fā)動機轉(zhuǎn)速
在一定的時間內(nèi),噴射到氣缸的燃油取決于壓力變化和燃料的比率。因為后者燃料的回收取決于泄壓閥和公式2-1:
(2-1)
是燃油回流系數(shù),是表面積,是在出口或在出口之前的輸出壓力,是燃料在裝有可調(diào)節(jié)彈簧的空值桿上的作用力。當發(fā)動機轉(zhuǎn)速上升到較高的壓力時,監(jiān)測口處的德操縱桿上的力是靜止不變的,它以較高的比率反饋到燃料模塊上,另一項重要的就是壓差數(shù)值是管內(nèi)的壓力滯后,這個時間間隔會使發(fā)動機長時間地高速運轉(zhuǎn),從而使燃油回流增加,在圖2-2中,燃料噴射量的增加同燃料供給角、高轉(zhuǎn)速的最低位置的計算、燃料噴射持續(xù)時間成線性關(guān)系,并且大于對低速的要求。是每個噴射循環(huán)的噴油量。
圖2-2 發(fā)動機轉(zhuǎn)速與噴射量圖
2.3 噴油定時
噴油定時的作用是控制發(fā)動機燃料經(jīng)濟性和動力性的關(guān)鍵,有效的噴油時間就是燃料時間滯后一個供給角,單位壓力燃油泵的變化率可以表示為式2-2:
(2-2)
為燃料彈性模量,為噴油量的增量,為燃油管的體積和橫截面,等式中如果全部的參數(shù)是唯一不變的,噴油量的上升速度會影響壓力的變化。使用一個斜率為常數(shù)的凸輪軸作為驅(qū)動輪,燃料供給角的增加量則開始線性變化。從圖2-3中可以得到燃料噴射量是線性增加的,這條曲線在不同的噴射時間下不會改變。
圖2-3 噴油時間與噴油量
3 實驗研究
測試工作已經(jīng)在一個四氣缸的渦輪增壓柴油機上完成了。
眾所周知,超高壓噴射系統(tǒng)的EUP可以滿足歐洲II排放標準,有的甚至可以滿足歐洲III排放標準。對噴射系統(tǒng)EUP的校準工作是非常重要的,其關(guān)鍵部分是噴油時間,即燃料的經(jīng)濟性和動力性,在1300r/min, 32N/m的工況下進行試驗得到了這些數(shù)據(jù),從噴射角開始,在燃油經(jīng)濟性和排氣溫度變化很小的情況下檢測檢測NO的濃度是否增加,減少NO的濃度是一個趨勢,而且噴射起始角越小,燃料燃燒效果就越好。反之,尾氣排放、燃油經(jīng)濟性和排氣溫度就會越差。
根據(jù)這種規(guī)律我們繪制出了燃油噴射圖(圖3-1)。圖中表示了發(fā)動機轉(zhuǎn)速升高時,噴射角開始增加,所以混和氣控制裝置的工作時間也會增加,當負荷減少時,噴射角則相應減小,發(fā)動機轉(zhuǎn)速下降到1400r—1800r/min時,這種圖譜則適應重型柴油機的燃料噴射規(guī)律。
圖3-1 燃油噴射圖
工作的第一步是繪制出載荷曲線,我們發(fā)現(xiàn)噴射脈沖與供給角呈線性關(guān)系,功率在噴射時間上可以自由控制,根據(jù)此種規(guī)律繪制出了滿載負荷時和極限功率曲線圖3-2
圖3-2 滿載負荷時和極限功率曲線圖
考慮到速度穩(wěn)定性,首先讓硅油離合器停止工作,使燃油經(jīng)濟性達到,甚至超過這個數(shù)值。高壓持續(xù)噴射時間相應減少,在此我們可以得到極限角的額定點,噴射延遲性是對高速柴油機包括重負載柴油機在內(nèi)都是有很大幫助的。時時校準工具—CUCSA對額定功率曲線、燃油速度的調(diào)節(jié)、扭矩儲備系數(shù)都可以自由地控制,因為不同的工作狀況都是適用的。在不同的燃料噴射時間內(nèi)都是可以人為控制。總之,發(fā)動機控制系統(tǒng)可以在不同的速度范圍內(nèi)進行控制。
4 結(jié)論
以上的研究是以下面三個條件為基礎(chǔ)進行研究的。
1,根據(jù)柴油機EUP來設(shè)計發(fā)動機燃油噴射量進行實時控制,按照發(fā)動機動力裝置傳遞,控制系統(tǒng)中的諸多參數(shù)。
2,燃油噴射時間圖譜和發(fā)動機功率峰值性能曲線的完成,可以精確的控制曲柄轉(zhuǎn)角達到
參考文獻:(略)
6