2020屆高考數(shù)學大二輪復習 沖刺創(chuàng)新專題 題型2 解答題 規(guī)范踩點 多得分 第7講 導數(shù)練習 文
《2020屆高考數(shù)學大二輪復習 沖刺創(chuàng)新專題 題型2 解答題 規(guī)范踩點 多得分 第7講 導數(shù)練習 文》由會員分享,可在線閱讀,更多相關《2020屆高考數(shù)學大二輪復習 沖刺創(chuàng)新專題 題型2 解答題 規(guī)范踩點 多得分 第7講 導數(shù)練習 文(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第7講 導數(shù) [考情分析] 高考對導數(shù)的考查定位在作為解決初等數(shù)學問題的工具這一目標上,主要體現(xiàn)在以下方面:(1)運用導數(shù)有關知識研究函數(shù)的單調性和極值(最值)問題;(2)利用導數(shù)的幾何意義,研究曲線切線的斜率問題;(3)對一些實際問題建立數(shù)學模型后求解.題型遍布選擇、填空與解答,難度上分層考查,是高考考查的重點內(nèi)容. 熱點題型分析 熱點1 利用導數(shù)研究函數(shù)的性質 1.導數(shù)與函數(shù)單調性的關系 (1)f′(x)>0是f(x)為增函數(shù)的充分不必要條件,如函數(shù)f(x)=x3在(-∞,+∞)上單調遞增,但f′(x)≥0; (2)f′(x)≥0是f(x)為增函數(shù)的必要不充分條件,當函
2、數(shù)在某個區(qū)間內(nèi)恒有f′(x)=0時,f(x)為常數(shù)函數(shù). 2.利用導數(shù)求函數(shù)最值的方法 (1)對含參數(shù)的函數(shù)解析式求最值時,常常進行分類討論,分類的原則是極值點在給定區(qū)間的內(nèi)部還是外部,從而根據(jù)單調性求出最值; (2)求極值和最值時,為了直觀易懂,常常列出x的取值范圍與y′的符號及y的單調區(qū)間、極值的對應表格. (2017·全國卷Ⅰ)已知函數(shù)f(x)=ex(ex-a)-a2x. (1)討論f(x)的單調性; (2)若f(x)≥0,求a的取值范圍. 解 (1)函數(shù)f(x)的定義域為(-∞,+∞), f′(x)=2e2x-aex-a2=(2ex+a)(ex-a). ①若a=0
3、,則f(x)=e2x在(-∞,+∞)上單調遞增. ②若a>0,則由f′(x)=0得x=ln a. 當x∈(-∞,ln a)時,f′(x)<0; 當x∈(ln a,+∞)時,f′(x)>0. 故f(x)在(-∞,ln a)上單調遞減, 在(ln a,+∞)上單調遞增. ③若a<0,則由f′(x)=0,得x=ln . 當x∈時,f′(x)<0; 當x∈時,f′(x)>0. 故f(x)在上單調遞減, 在上單調遞增. (2)①若a=0,則f(x)=e2x,所以f(x)≥0. ②若a>0,則由(1),得當x=ln a時,f(x)取得最小值,最小值為f(ln a)=-a2ln a,
4、 從而當且僅當-a2ln a≥0,即a≤1時,f(x)≥0. ③若a<0,則由(1),得當x=ln 時,f(x)取得最小值,最小值為f=a2,從而當且僅當a2≥0,即a≥-2e時,f(x)≥0. 綜上,a的取值范圍是[-2e,1]. 運用導數(shù)知識來討論函數(shù)單調性時,首先考慮函數(shù)的定義域,再求出f′(x),由f′(x)的正負,得出函數(shù)f(x)的單調區(qū)間;函數(shù)的最值(極值)的求法:由確認的單調區(qū)間,結合極值點的定義及自變量的取值范圍,得出函數(shù)f(x)的極值或最值. (2019·全國卷Ⅲ)已知函數(shù)f(x)=2x3-ax2+b. (1)討論f(x)的單調性; (2)是否存在a,b
5、,使得f(x)在區(qū)間[0,1]上的最小值為-1且最大值為1?若存在,求出a,b的所有值;若不存在,說明理由. 解 (1)f′(x)=6x2-2ax=2x(3x-a). 令f′(x)=0,得x=0或x=. 若a>0,則當x∈(-∞,0)∪時,f′(x)>0; 當x∈時,f′(x)<0. 故f(x)在(-∞,0),上單調遞增,在上單調遞減. 若a=0,則f(x)在(-∞,+∞)上單調遞增. 若a<0,則當x∈∪(0,+∞)時,f′(x)>0; 當x∈時,f′(x)<0. 故f(x)在,(0,+∞)上單調遞增,在上單調遞減. (2)滿足題設條件的a,b存在. ①當a≤0時,由(
6、1),知f(x)在[0,1]上單調遞增,所以f(x)在區(qū)間[0,1]上的最小值為f(0)=b,最大值為f(1)=2-a+b.此時a,b滿足題設條件當且僅當b=-1,2-a+b=1,即a=0,b=-1. ②當a≥3時,由(1),知f(x)在[0,1]上單調遞減,所以f(x)在區(qū)間[0,1]上的最大值為f(0)=b,最小值為f(1)=2-a+b.此時a,b滿足題設條件當且僅當2-a+b=-1,b=1,即a=4,b=1. ③當0<a<3時,由(1),知f(x)在[0,1]上的最小值為f=-+b,最大值為b或2-a+b. 若-+b=-1,b=1,則a=3,與0<a<3矛盾. 若-+b=-1,2
7、-a+b=1, 則a=3或a=-3或a=0,與0<a<3矛盾. 綜上,當a=0,b=-1或a=4,b=1時,f(x)在[0,1]的最小值為-1,最大值為1. 熱點2 利用導數(shù)解決與方程的解有關的問題 方程的根、函數(shù)的零點、函數(shù)圖象與x軸的交點的橫坐標是三個等價的概念,解決這類問題可以通過函數(shù)的單調性、極值與最值,根據(jù)函數(shù)圖象的走勢,通過數(shù)形結合直觀求解. (2019·寧夏石嘴山市模擬)已知函數(shù)f(x)=ex(x-aex). (1)當a=0時,求f(x)的最值; (2)若f(x)有兩個不同的極值點,求a的取值范圍. 解 (1)當a=0時,f(x)=xex, 所以f′(x
8、)=(x+1)ex,令f′(x)>0,解得x>-1, 令f′(x)<0,解得x<-1, 所以f(x)=xex在(-∞,-1)上單調遞減,在(-1,+∞)上單調遞增,所以f(x)min=f(-1)=-,無最大值. (2)因為f′(x)=ex(x+1-2aex),且f(x)有兩個不同的極值點,所以f′(x)=0有兩個不等實根,所以2a=有兩個不等的實根. 令g(x)=,則g′(x)=,令g′(x)>0,解得x<0,令g′(x)<0,解得x>0,所以g(x)在(-∞,0)上單調遞增,在(0,+∞)上單調遞減,所以g(x)max=g(0)=1. 又g(-1)=0,當x>0時,g(x)>0
9、,且當x→+∞時,g(x)→0,據(jù)此可畫出g(x)的大致圖象,如圖所示.由g(x)的圖象可得0<2a<1,即0
10、=(x-1)ln x-x-1.
證明:(1)f(x)存在唯一的極值點;
(2)f(x)=0有且僅有兩個實根,且兩個實根互為倒數(shù).
證明 (1)f(x)的定義域為(0,+∞).
f′(x)=+ln x-1=ln x-.
因為y=ln x在(0,+∞)上單調遞增,
y=在(0,+∞)上單調遞減,
所以f′(x)在(0,+∞)上單調遞增.
又f′(1)=-1<0,f′(2)=ln 2-=>0,
故存在唯一x0∈(1,2),使得f′(x0)=0.
又當x 11、.
(2)由(1),知f(x0) 12、
2.若函數(shù)f(x)在區(qū)間D上不存在最大(小)值,且值域為(m,n),則:
(1)不等式f(x)>a(≥a)在區(qū)間D上恒成立?m≥a;
(2)不等式f(x)
13、.
所以f(x)在(0,a)上單調遞減,在(a,+∞)上單調遞增.
故x=a是f(x)在(0,+∞)上的唯一最小值點.
因為f(1)=0,所以當且僅當a=1時,f(x)≥0,
故a=1.
(2)由(1),知當x∈(1,+∞)時,x-1-ln x>0.
令x=1+,得ln <,
從而ln +ln +…+ln
<++…+=1-<1.
故·…·<e.
而>2,
所以m的最小值為3.
構造輔助函數(shù)是用導數(shù)證明不等式的關鍵,把不等式的證明轉化為利用導數(shù)研究函數(shù)的單調性或求最值,從而證得不等式.構造輔助函數(shù)的一般方法及解題步驟如下:
(1)移項(有時需要作簡單的恒等變形), 14、使不等式的一端為0,另一端即為所作的輔助函數(shù)f(x);
(2)求f′(x),并驗證f(x)在指定區(qū)間上的增減性;
(3)求出區(qū)間端點的函數(shù)值(或最值),作比較即得所證.
(2019·天津高考)設函數(shù)f(x)=excosx,g(x)為f(x)的導函數(shù).
(1)求f(x)的單調區(qū)間;
(2)當x∈時,證明f(x)+g(x)≥0;
(3)設xn為函數(shù)u(x)=f(x)-1在區(qū)間內(nèi)的零點,其中n∈N,證明2nπ+-xn<.
解 (1)由已知,有f′(x)=ex(cosx-sinx).
因此,當x∈(k∈Z)時,
有sinx>cosx,得f′(x)<0,則f(x)單調遞減;
當x 15、∈(k∈Z)時,有sinx 16、cosxn=1.
記yn=xn-2nπ,則yn∈,
且f(yn)=eyncosyn=exn-2nπcos(xn-2nπ)=e-2nπ(n∈N).
由f(yn)=e-2nπ≤1=f(y0)及(1),得yn≥y0.
由(2),知當x∈時,g′(x)<0,
所以g(x)在上為減函數(shù),
因此g(yn)≤g(y0) 17、區(qū)間上的最大值和最小值.
解 (1)因為f(x)=excosx-x,
所以f′(x)=ex(cosx-sinx)-1,f′(0)=0.
又因為f(0)=1,
所以曲線y=f(x)在點(0,f(0))處的切線方程為y=1.
(2)設h(x)=ex(cosx-sinx)-1,則
h′(x)=ex(cosx-sinx-sinx-cosx)=-2exsinx.
當x∈時,h′(x)<0,
所以h(x)在區(qū)間上單調遞減.
所以對任意x∈有h(x)<h(0)=0,
即f′(x)<0.
所以函數(shù)f(x)在區(qū)間上單調遞減.
因此f(x)在區(qū)間上的最大值為f(0)=1,最小值為f=-.
18、
2.已知函數(shù)f(x)=ex+ax-a(a∈R且a≠0).
(1)若f(0)=2,求實數(shù)a的值,并求此時f(x)在[-2,1]上的最小值;
(2)若函數(shù)f(x)不存在零點,求實數(shù)a的取值范圍.
解 (1)由題意知,函數(shù)f(x)的定義域為R,
又f(0)=1-a=2,得a=-1,
所以f(x)=ex-x+1,求導得f′(x)=ex-1.
易知f(x)在[-2,0]上單調遞減,在[0,1]上單調遞增,
所以當x=0時,f(x)在[-2,1]上取得最小值2.
(2)f′(x)=ex+a,由于ex>0,
①當a>0時,f′(x)>0,f(x)在R上是增函數(shù),
當x>1時,f(x)= 19、ex+a(x-1)>0;
當x<0時,取x=-,
則f<1+a=-a<0.
所以函數(shù)f(x)存在零點,不滿足題意.
②當a<0時,令f′(x)=0,得x=ln (-a).
在(-∞,ln (-a))上,f′(x)<0,f(x)單調遞減,在(ln (-a),+∞)上,f′(x)>0,f(x)單調遞增,
所以當x=ln (-a)時,f(x)取得最小值.
函數(shù)f(x)不存在零點,等價于
f[ln (-a)]=eln (-a)+aln (-a)-a=-2a+aln (-a)>0,解得-e2
20、數(shù)f(x)=x-2sinx+1,g(x)=x2+mcosx.
(1)求曲線y=f(x)在x=0處的切線方程;
(2)求f(x)在(0,π)上的單調區(qū)間;
(3)當m>1時,證明:g(x)在(0,π)上存在最小值.
解 (1)因為f(x)=x-2sinx+1,
所以f′(x)=1-2cosx,
則f(0)=1,f′(0)=-1,所以曲線y=f(x)在x=0處的切線方程為y=-x+1.
(2)令f′(x)=0,則cosx=,當x∈(0,π)時,得x=,當x變化時,f′(x), f(x)的變化如下表.
x
f′(x)
-
0
+
f(x)
減
最小值
增
21、
所以函數(shù)f(x)在(0,π)上的單調遞減區(qū)間為,單調遞增區(qū)間為.
(3)證明:因為g(x)=x2+mcosx,所以g′(x)=x-msinx.
令h(x)=g′(x)=x-msinx,則h′(x)=1-mcosx,
因為m>1,所以∈(0,1),
令h′(x)=1-mcosx=0,則cosx=,易知cosx=在(0,π)內(nèi)有唯一解x0,
當x∈(0,x0)時,h′(x)<0,當x∈(x0,π)時,h′(x)>0.
所以h(x)在(0,x0)上單調遞減,在(x0,π)上單調遞增.所以h(x0) 22、唯一零點x1,
當x∈(0,x1)時,h(x)<0,即g′(x)<0,
當x∈(x1,π)時,h(x)>0,即g′(x)>0,
所以g(x)在(0,x1)上單調遞減,在(x1,π)上單調遞增.
所以函數(shù)g(x)在x=x1處取得最小值,
即當m>1時,函數(shù)g(x)在(0,π)上存在最小值.
4.(2019·東北三省四校聯(lián)考)已知函數(shù)f(x)=ln x-x-m(m<-2,m為常數(shù)).
(1)求函數(shù)f(x)在上的最小值;
(2)設x1,x2是函數(shù)f(x)的兩個零點,且x1 23、(x)==0,∴x=1.
當x∈(0,1)時,f′(x)>0,所以y=f(x)在(0,1)上單調遞增;
當x∈(1,+∞)時,f′(x)<0,
所以y=f(x)在(1,+∞)上單調遞減.
且f=-1--m,f(e)=1-e-m,
因為f-f(e)=-2-+e>0,
所以函數(shù)f(x)在上的最小值為1-e-m.
(2)證明:由已知條件和(1)知x1,x2滿足ln x-x-m=0,且0
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 110中國人民警察節(jié)(筑牢忠誠警魂感受別樣警彩)
- 2025正字當頭廉字入心爭當公安隊伍鐵軍
- XX國企干部警示教育片觀后感筑牢信仰之基堅守廉潔底線
- 2025做擔當時代大任的中國青年PPT青年思想教育微黨課
- 2025新年工作部署會圍繞六個干字提要求
- XX地區(qū)中小學期末考試經(jīng)驗總結(認真復習輕松應考)
- 支部書記上黨課筑牢清廉信念為高質量發(fā)展營造風清氣正的環(huán)境
- 冬季消防安全知識培訓冬季用電防火安全
- 2025加強政治引領(政治引領是現(xiàn)代政黨的重要功能)
- 主播直播培訓直播技巧與方法
- 2025六廉六進持續(xù)涵養(yǎng)良好政治生態(tài)
- 員工職業(yè)生涯規(guī)劃方案制定個人職業(yè)生涯規(guī)劃
- 2024年XX地區(qū)黨建引領鄉(xiāng)村振興工作總結
- XX中小學期末考試經(jīng)驗總結(認真復習輕松應考)
- 幼兒園期末家長會長長的路慢慢地走