高考數(shù)學(xué)(精講+精練+精析)專題3_1 導(dǎo)數(shù)以及運(yùn)算、應(yīng)用試題 理(含解析)
專題3.1 導(dǎo)數(shù)以及運(yùn)算、應(yīng)用【三年高考】1. 【2016年高考四川理數(shù)】設(shè)直線l1,l2分別是函數(shù)f(x)= 圖象上點(diǎn)P1,P2處的切線,l1與l2垂直相交于點(diǎn)P,且l1,l2分別與y軸相交于點(diǎn)A,B,則PAB的面積的取值范圍是( )(A)(0,1) (B)(0,2) (C)(0,+) (D)(1,+)【答案】A2【2016高考新課標(biāo)2理數(shù)】若直線是曲線的切線,也是曲線的切線,則 【答案】3【2016高考新課標(biāo)3理數(shù)】設(shè)函數(shù),其中,記的最大值為()求;()求;()證明【解析】()()當(dāng)時(shí),,因此,當(dāng)時(shí),將變形為令,則是在上的最大值,且當(dāng)時(shí),取得極小值,極小值為令,解得(舍去),()當(dāng)時(shí),在內(nèi)無極值點(diǎn),所以()當(dāng)時(shí),由,知又,所以綜上, ()由()得.當(dāng)時(shí),.當(dāng)時(shí),所以.當(dāng)時(shí),所以.4【2016高考山東理數(shù)】已知.(I)討論的單調(diào)性;(II)當(dāng)時(shí),證明對(duì)于任意的成立.當(dāng)時(shí),單調(diào)遞減.綜上所述,當(dāng)時(shí),函數(shù)在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減;當(dāng)時(shí),在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增;當(dāng)時(shí),在內(nèi)單調(diào)遞增;當(dāng),在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.5【2016高考新課標(biāo)1卷】已知函數(shù)有兩個(gè)零點(diǎn).(I)求a的取值范圍;(II)設(shè)x1,x2是的兩個(gè)零點(diǎn),證明:.【解析】()(i)設(shè),則,只有一個(gè)零點(diǎn)(ii)設(shè),則當(dāng)時(shí),;當(dāng)時(shí),所以在上單調(diào)遞減,在上單調(diào)遞增又,取滿足且,則,故存在兩個(gè)零點(diǎn)(iii)設(shè),由得或若,則,故當(dāng)時(shí),因此在上單調(diào)遞增又當(dāng)時(shí),所以不存在兩個(gè)零點(diǎn)若,則,故當(dāng)時(shí),;當(dāng)時(shí),因此在單調(diào)遞減,在單調(diào)遞增又當(dāng)時(shí),所以不存在兩個(gè)零點(diǎn)綜上,的取值范圍為()不妨設(shè),由()知,在上單調(diào)遞減,所以等價(jià)于,即由于,而,所以設(shè),則所以當(dāng)時(shí),而,故當(dāng)時(shí),從而,故6. 【2015高考福建,理10】若定義在上的函數(shù) 滿足 ,其導(dǎo)函數(shù) 滿足 ,則下列結(jié)論中一定錯(cuò)誤的是( )A B C D 【答案】C7.【2015高考新課標(biāo)2,理12】設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),當(dāng)時(shí),則使得成立的的取值范圍是( )A BC D【答案】A8.【2015高考新課標(biāo)1,理12】設(shè)函數(shù)=,其中a1,若存在唯一的整數(shù),使得0,則的取值范圍是( )(A)-,1) (B)-,) (C),) (D),1)【答案】D【解析】設(shè)=,由題知存在唯一的整數(shù),使得在直線的下方.因?yàn)?,所以?dāng)時(shí),0,當(dāng)時(shí),0,所以當(dāng)時(shí),=,當(dāng)時(shí),=-1,直線恒過(1,0)斜率且,故,且,解得1,故選D.9. 【2015高考新課標(biāo)1,理21】已知函數(shù)f(x)=.()當(dāng)a為何值時(shí),x軸為曲線 的切線;()用 表示m,n中的最小值,設(shè)函數(shù) ,討論h(x)零點(diǎn)的個(gè)數(shù).【解析】設(shè)曲線與軸相切于點(diǎn),則,即,解得.因此,當(dāng)時(shí),軸是曲線的切線. ()當(dāng)時(shí),從而, 在(1,+)無零點(diǎn). 當(dāng)=1時(shí),若,則,,故=1是的零點(diǎn);若,則,,故=1不是的零點(diǎn).當(dāng)時(shí),所以只需考慮在(0,1)的零點(diǎn)個(gè)數(shù).10.【2014江西高考理第14題】若曲線上點(diǎn)處的切線平行于直線,則點(diǎn)的坐標(biāo)是_.【答案】【解析】設(shè)切點(diǎn),則由得:,所以點(diǎn)的坐標(biāo)是.11. 【2014高考遼寧理第21題】已知函數(shù),.證明:()存在唯一,使;()存在唯一,使,且對(duì)(1)中的.12. 【2014高考大綱理第22題】函數(shù).(I)討論的單調(diào)性;(II)設(shè),證明:.【解析】(I)的定義域?yàn)椋╥)當(dāng)時(shí),若,則在上是增函數(shù);若則在上是減函數(shù);若則在上是增函數(shù)(ii)當(dāng)時(shí),成立當(dāng)且僅當(dāng)在上是增函數(shù)(iii)當(dāng)時(shí),若,則在是上是增函數(shù);若,則在上是減函數(shù);若,則在上是增函數(shù)【三年高考命題回顧】縱觀前三年各地高考試題,導(dǎo)數(shù)的幾何意義與導(dǎo)數(shù)的應(yīng)用是高考的熱點(diǎn),年年都出題,題型既有選擇題、填空題,又有解答題,難度中檔左右,解答題作為把關(guān)題存在,在考查導(dǎo)數(shù)的概念及其運(yùn)算的基礎(chǔ)上,又注重考查解析幾何的相關(guān)知識(shí)【2017年高考復(fù)習(xí)建議與高考命題預(yù)測(cè)】由前三年的高考命題形式可以看出 , 導(dǎo)數(shù)是研究函數(shù)的工具,導(dǎo)數(shù)進(jìn)入新教材之后,給函數(shù)問題注入了生機(jī)和活力,開辟了許多解題新途徑,拓展了高考對(duì)函數(shù)問題的命題空間所以把導(dǎo)數(shù)與函數(shù)綜合在一起是順理成章的事情,對(duì)函數(shù)的命題已不再拘泥于一次函數(shù),二次函數(shù),反比例函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù)等,對(duì)研究函數(shù)的目標(biāo)也不僅限于求定義域,值域,單調(diào)性,奇偶性,對(duì)稱性,周期性等,而是把高次多項(xiàng)式函數(shù),分式函數(shù),指數(shù)型,對(duì)數(shù)型函數(shù),以及初等基本函數(shù)的和、差、積、商都成為命題的對(duì)象,試題的命制往往融函數(shù),導(dǎo)數(shù),不等式,方程等知識(shí)于一體,通過演繹證明,運(yùn)算推理等理性思維,解決單調(diào)性,極值,最值,切線,方程的根,參數(shù)的范圍等問題,這類題難度很大,綜合性強(qiáng),內(nèi)容新,背景新,方法新,是高考命題的豐富寶藏解題中需用到函數(shù)與方程思想、分類討論思想、數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸思想因此在2017年高考備考中應(yīng)狠下功夫,抓好基礎(chǔ),提高自己的解題能力,掌握好解題技巧,特別是構(gòu)造函數(shù)的靈活運(yùn)用.預(yù)測(cè)2017年高考仍將以導(dǎo)數(shù)的應(yīng)用為背景設(shè)置成的導(dǎo)數(shù)的綜合題為主要考點(diǎn)也有可能利用導(dǎo)數(shù)的幾何意義出一道中等難度試題,如求切線,或求參數(shù)值,重點(diǎn)考查運(yùn)算及數(shù)形結(jié)合能力,以及構(gòu)造新函數(shù)等能力也有可能考查恒成立與存在性問題.【2017年高考考點(diǎn)定位】高考對(duì)導(dǎo)數(shù)的考查主要有導(dǎo)數(shù)的運(yùn)算,導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)判斷單調(diào)性,求最值,證明不等式,證明恒成立,以及存在性問題等,難度較大,往往作為把關(guān)題存在考點(diǎn)一、導(dǎo)數(shù)的基本運(yùn)算【備考知識(shí)梳理】1常見函數(shù)的求導(dǎo)公式()(C為常數(shù));();();();(5);(6);(7)且;(8)2兩個(gè)函數(shù)的和、差、積的求導(dǎo)法則法則1:兩個(gè)函數(shù)的和(或差)的導(dǎo)數(shù),等于這兩個(gè)函數(shù)的導(dǎo)數(shù)的和(或差),即: (法則2:兩個(gè)函數(shù)的積的導(dǎo)數(shù),等于第一個(gè)函數(shù)的導(dǎo)數(shù)乘以第二個(gè)函數(shù),加上第一個(gè)函數(shù)乘以第二個(gè)函數(shù)的導(dǎo)數(shù),即:若C為常數(shù),則.即常數(shù)與函數(shù)的積的導(dǎo)數(shù)等于常數(shù)乘以函數(shù)的導(dǎo)數(shù): 法則3兩個(gè)函數(shù)的商的導(dǎo)數(shù),等于分子的導(dǎo)數(shù)與分母的積,減去分母的導(dǎo)數(shù)與分子的積,再除以分母的平方:=(v0)3.形如y=f的函數(shù)稱為復(fù)合函數(shù)復(fù)合函數(shù)求導(dǎo)步驟:分解求導(dǎo)回代法則:y|= y| u|【規(guī)律方法技巧】(1)求導(dǎo)之前,應(yīng)利用代數(shù)、三角恒等式等變形對(duì)函數(shù)進(jìn)行化簡,然后求導(dǎo),這樣可以減少運(yùn)算量,提高運(yùn)算速度,減少差錯(cuò);(2)有的函數(shù)雖然表面形式為函數(shù)的商的形式,但在求導(dǎo)前利用代數(shù)或三角恒等變形將函數(shù)先化簡,然后進(jìn)行求導(dǎo),有時(shí)可以避免使用商的求導(dǎo)法則,減少運(yùn)算量;(3)復(fù)合函數(shù)的求導(dǎo),要正確分析函數(shù)的復(fù)合層次,通過設(shè)中間變量,確定復(fù)合過程,然后求導(dǎo)【考點(diǎn)針對(duì)訓(xùn)練】(1)求的導(dǎo)數(shù);(2)求的導(dǎo)數(shù);(3)求的導(dǎo)數(shù);(4)求y=的導(dǎo)數(shù);(5)求y的導(dǎo)數(shù).考點(diǎn)二、導(dǎo)數(shù)的幾何意義【備考知識(shí)梳理】函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義是曲線在點(diǎn)處的切線的斜率也就是說,曲線在點(diǎn)處的切線的斜率是相應(yīng)地,切線方程為【規(guī)律方法技巧】求曲線切線方程的步驟:(1)求出函數(shù)在的導(dǎo)數(shù),即曲線在點(diǎn)處切線的斜率;(2)在已知切點(diǎn)和斜率的條件下,求得切線方程特別地,當(dāng)曲線在點(diǎn)處的切線平行于軸時(shí)(此時(shí)導(dǎo)數(shù)不存在),可由切線的定義知切線方程為;當(dāng)切點(diǎn)未知時(shí),可以先設(shè)出切點(diǎn)坐標(biāo),再求解.【考點(diǎn)針對(duì)訓(xùn)練】1. 【2016年河南鄭州高三二?!壳€在點(diǎn)處的切線平行于直線,則點(diǎn)的坐標(biāo)為( )A B C和 D【答案】C.2. 【河南八市2016年4月高三質(zhì)檢卷】.已知曲線與恰好存在兩條公切線,則實(shí)數(shù)的取值范圍為_【答案】【解析】的導(dǎo)數(shù)的導(dǎo)數(shù)為設(shè)與曲線相切的切點(diǎn)為相切的切點(diǎn)為則有公共切線斜率為又即有即為即有則有即為令則,當(dāng)時(shí),遞減,當(dāng)時(shí),遞增即有處取得極大值,也為最大值,且為由恰好存在兩條公切線,即有兩解,可得的范圍是故答案為考點(diǎn)三、借助導(dǎo)數(shù)研究函數(shù)單調(diào)性【備考知識(shí)梳理】一般地,函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)有如下關(guān)系:在某個(gè)區(qū)間內(nèi),如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞減;【規(guī)律方法技巧】求函數(shù)單調(diào)區(qū)間的一般步驟.(1)求函數(shù)的導(dǎo)數(shù)(2)令解不等式,得的范圍就是單調(diào)增區(qū)間;令解不等式,得的范圍就是單調(diào)減區(qū)間(3)對(duì)照定義域得出結(jié)論.【考點(diǎn)針對(duì)訓(xùn)練】1. 【2016年山西四校第三次聯(lián)考】已知函數(shù),若對(duì)任意,則( )A. B. C. D. 【答案】A2. 【2016年山西四市高三四?!吭O(shè)函數(shù).(1)求的單調(diào)區(qū)間;(2)若為整數(shù),且當(dāng)時(shí),恒成立,其中為的導(dǎo)函數(shù),求的最大值.【解析】(1)函數(shù)f(x)=ex-ax-2的定義域是R,f(x)=ex-a, 若a0,則f(x)=ex-a0,所以函數(shù)f(x)=ex-ax-2在(-,+)上單調(diào)遞增 ,若a0,則當(dāng)x(-,lna)時(shí),f(x)=ex-a0;當(dāng)x(lna,+)時(shí),f(x)=ex-a0;所以,f(x)在(-,lna)單調(diào)遞減,在(lna,+)上單調(diào)遞增. 考點(diǎn)五、借助導(dǎo)數(shù)研究函數(shù)的極值【備考知識(shí)梳理】若滿足,且在的兩側(cè)的導(dǎo)數(shù)異號(hào),則是的極值點(diǎn),是極值,并且如果在兩側(cè)滿足“左正右負(fù)”,則是的極大值點(diǎn),是極大值;如果在兩側(cè)滿足“左負(fù)右正”,則是的極小值點(diǎn),是極小值【規(guī)律方法技巧】求函數(shù)的極值的步驟:(1)確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù)f(x) .(2)求方程f(x)=0的根.(3)用函數(shù)的導(dǎo)數(shù)為0的點(diǎn),順次將函數(shù)的定義區(qū)間分成若干小開區(qū)間,并列成表格.檢查f(x)在方程根左右的值的符號(hào),如果左正右負(fù),那么f(x)在這個(gè)根處取得極大值;如果左負(fù)右正,那么f(x)在這個(gè)根處取得極小值;如果左右不改變符號(hào),那么f(x)在這個(gè)根處無極值.【考點(diǎn)針對(duì)訓(xùn)練】1. 【2015-2016學(xué)年度唐山市高三第一?!恳阎瘮?shù)的極大值為m,極小值為n,則m+n=( )(A)0 (B)2 (C) -4 (D) -2【答案】D【解析】因?yàn)椋?,解得,所以?dāng)時(shí),函數(shù)單調(diào)遞增,當(dāng)時(shí),函數(shù)單調(diào)遞減,所以當(dāng)時(shí)函數(shù)取得極大值,當(dāng)時(shí)函數(shù)取得極小值,所以,故選D2. 【2016年榆林二?!恳阎瘮?shù),(且).(1)當(dāng)時(shí),若已知是函數(shù)的兩個(gè)極值點(diǎn),且滿足:,求證:;(2)當(dāng)時(shí),求實(shí)數(shù)的最小值;對(duì)于任意正實(shí)數(shù),當(dāng)時(shí),求證:.考點(diǎn)五、借助導(dǎo)數(shù)研究函數(shù)最值【備考知識(shí)梳理】求函數(shù)最值的步驟:(1)求出在上的極值.(2)求出端點(diǎn)函數(shù)值.(3)比較極值和端點(diǎn)值,確定最大值或最小值.【規(guī)律方法技巧】1、利用導(dǎo)數(shù)研究函數(shù)的最值問題是要養(yǎng)成列表的習(xí)慣,這樣能使解答過程直觀條理;2、會(huì)利用導(dǎo)函數(shù)的圖象提取相關(guān)信息;3、極值點(diǎn)不一定是最值點(diǎn),最值點(diǎn)也不一定是極值點(diǎn),但若函數(shù)在開區(qū)間內(nèi)只有一個(gè)極值點(diǎn),則這個(gè)極值點(diǎn)也一定是最值點(diǎn).【考點(diǎn)針對(duì)訓(xùn)練】1. 【2016年安徽淮南市高三二?!亢瘮?shù)在區(qū)間上的最大值是 .【答案】2. 【2016屆邯鄲市一中高三第十次研】已知函數(shù),其中(提示:)(1)若是的極值點(diǎn),求的值;(2)求的單調(diào)區(qū)間;(3)若在上的最大值是0,求的取值范圍【解析】(1)依題意,令,解得經(jīng)檢驗(yàn),時(shí),符合題意.(2)當(dāng)時(shí),故的單調(diào)增區(qū)間是;單調(diào)減區(qū)間是當(dāng)時(shí),令,得,或當(dāng)時(shí),與的情況如下:-0+0+所以,的單調(diào)增區(qū)間是;單調(diào)減區(qū)間是和當(dāng)時(shí),的單調(diào)減區(qū)間是當(dāng)時(shí),與的情況如下:-0+0+所以,的單調(diào)增區(qū)間是;單調(diào)減區(qū)間是和當(dāng)時(shí),的單調(diào)增區(qū)間是; 單調(diào)減區(qū)間是 綜上,當(dāng)時(shí),的增區(qū)間是 ,減區(qū)間是;當(dāng)時(shí),的增區(qū)間是,減區(qū)間是和;當(dāng)時(shí),的減區(qū)間是;當(dāng)時(shí),的增區(qū)間是;,減區(qū)間是和 【應(yīng)試技巧點(diǎn)撥】1. 利用導(dǎo)數(shù)求切線問題中的“在”與“過”在解決曲線的切線問題時(shí),利用導(dǎo)數(shù)求切線的斜率是非常重要的一類方法.在求解過程中特別注意:曲線在某點(diǎn)處的切線若有則只有一條,曲線過某點(diǎn)的要切線往往不止一條;切線與曲線的公共點(diǎn)不一定只有一個(gè).因此在審題時(shí)應(yīng)首先判斷是“在”還是“過”.若“在”,利用該點(diǎn)出的導(dǎo)數(shù)為直線的斜率,便可直接求解;若“過”,解決問題關(guān)鍵是設(shè)切點(diǎn),利用“待定切點(diǎn)法”,即:設(shè)點(diǎn)A(x,y)是曲線y=f(x)上的一點(diǎn),則以A為切點(diǎn)的切線方程為yy=f,再根據(jù)題意求出切點(diǎn).2.函數(shù)切線的相關(guān)問題的解決,抓住兩個(gè)關(guān)鍵點(diǎn):其一,切點(diǎn)是交點(diǎn);其二,在切點(diǎn)處的導(dǎo)數(shù)是切線的斜率因此,解決此類問題,一般要設(shè)出切點(diǎn),建立關(guān)系方程(組)其三,求曲線的切線要注意“過點(diǎn)P的切線”與“在點(diǎn)P處的切線”的差異過點(diǎn)P的切線中,點(diǎn)P不一定是切點(diǎn),點(diǎn)P也不一定在已知曲線上;在點(diǎn)P處的切線,點(diǎn)P是切點(diǎn)3函數(shù)的導(dǎo)數(shù)在其單調(diào)性研究的作用:(1)當(dāng)函數(shù)在一個(gè)指定的區(qū)間內(nèi)單調(diào)時(shí),需要這個(gè)函數(shù)的導(dǎo)數(shù)在這個(gè)區(qū)間內(nèi)不改變符號(hào)(即恒大于或者等于零、恒小于或者等于零),當(dāng)函數(shù)在一個(gè)區(qū)間內(nèi)不單調(diào)時(shí),這個(gè)函數(shù)的導(dǎo)數(shù)在這個(gè)區(qū)間內(nèi)一定變號(hào),如果導(dǎo)數(shù)的圖象是連續(xù)的曲線,這個(gè)導(dǎo)數(shù)在這個(gè)區(qū)間內(nèi)一定存在變號(hào)的零點(diǎn),可以把問題轉(zhuǎn)化為對(duì)函數(shù)零點(diǎn)的研究(2)根據(jù)函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性,在函數(shù)解析式中若含有字母參數(shù)時(shí)要進(jìn)行分類討論,這種分類討論首先是在函數(shù)的定義域內(nèi)進(jìn)行,其次要根據(jù)函數(shù)的導(dǎo)數(shù)等于零的點(diǎn)在其定義域內(nèi)的情況進(jìn)行,如果這樣的點(diǎn)不止一個(gè),則要根據(jù)字母參數(shù)在不同范圍內(nèi)取值時(shí),導(dǎo)數(shù)等于零的根的大小關(guān)系進(jìn)行分類討論,最后在分類解決問題后要整合一個(gè)一般的結(jié)論易錯(cuò)提示在利用“若函數(shù)單調(diào)遞增,則”求參數(shù)的范圍時(shí),注意不要漏掉“等號(hào)”4利用導(dǎo)數(shù)研究函數(shù)的極值與最值:(1)確定定義域(2)求導(dǎo)數(shù)(3)若求極值,則先求方程的根,再檢驗(yàn)在方程根左、右值的符號(hào),求出極值(當(dāng)根中有參數(shù)時(shí)要注意分類討論根是否在定義域內(nèi))若已知極值大小或存在的情況,則轉(zhuǎn)化為已知方程根的大小或存在情況,從而求解5求函數(shù)在上的最大值與最小值的步驟(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值6.利用導(dǎo)數(shù)處理恒成立問題不等式在某區(qū)間的恒成立問題,可以轉(zhuǎn)化為求函數(shù)在區(qū)間上的最值問題來解決,函數(shù)的最值問題的求解,利用求導(dǎo)分析函數(shù)單調(diào)性是常規(guī)途徑,例如:為增函數(shù)(為減函數(shù)).在區(qū)間上是增函數(shù)在上恒成立;在區(qū)間上為減函數(shù)在上恒成立.7.利用導(dǎo)數(shù),如何解決函數(shù)與不等式大題在高考題的大題中,每年都要設(shè)計(jì)一道函數(shù)大題. 在函數(shù)的解答題中有一類是研究不等式或是研究方程根的情況,基本的題目類型是研究在一個(gè)區(qū)間上恒成立的不等式(實(shí)際上就是證明這個(gè)不等式),研究不等式在一個(gè)區(qū)間上成立時(shí)不等式的某個(gè)參數(shù)的取值范圍,研究含有指數(shù)式、對(duì)數(shù)式、三角函數(shù)式等超越式的方程在某個(gè)區(qū)間上的根的個(gè)數(shù)等,這些問題依據(jù)基礎(chǔ)初等函數(shù)的知識(shí)已經(jīng)無能為力,就需要根據(jù)導(dǎo)數(shù)的方法進(jìn)行解決使用導(dǎo)數(shù)的方法研究不等式和方程的基本思路是構(gòu)造函數(shù),通過導(dǎo)數(shù)的方法研究這個(gè)函數(shù)的單調(diào)性、極值和特殊點(diǎn)的函數(shù)值,根據(jù)函數(shù)的性質(zhì)推斷不等式成立的情況以及方程實(shí)根的個(gè)數(shù)因?yàn)閷?dǎo)數(shù)的引入,為函數(shù)問題的解決提供了操作工具.因此入手大家比較清楚,但是深入解決函數(shù)與不等式相結(jié)合的題目時(shí),往往一籌莫展.原因是找不到兩者的結(jié)合點(diǎn),不清楚解決技巧.解題技巧總結(jié)如下(1)樹立服務(wù)意識(shí):所謂“服務(wù)意識(shí)”是指利用給定函數(shù)的某些性質(zhì)(一般第一問先讓解決出來),如函數(shù)的單調(diào)性、最值等,服務(wù)于第二問要證明的不等式.(2)強(qiáng)化變形技巧:所謂“強(qiáng)化變形技巧”是指對(duì)于給出的不等式直接證明無法下手,可考慮對(duì)不等式進(jìn)行必要的等價(jià)變形后,再去證明.例如采用兩邊取對(duì)數(shù)(指數(shù)),移項(xiàng)通分等等.要注意變形的方向:因?yàn)橐煤瘮?shù)的性質(zhì),力求變形后不等式一邊需要出現(xiàn)函數(shù)關(guān)系式.(3)巧妙構(gòu)造函數(shù):所謂“巧妙構(gòu)造函數(shù)”是指根據(jù)不等式的結(jié)構(gòu)特征,構(gòu)造函數(shù),利用函數(shù)的最值進(jìn)行解決.在構(gòu)造函數(shù)的時(shí)候靈活多樣,注意積累經(jīng)驗(yàn),體現(xiàn)一個(gè)“巧妙”.二年模擬1. 【2016屆海南省農(nóng)墾中學(xué)高三考前押題】曲線在點(diǎn)處的切線的傾斜角為( )A B C D【答案】A2. 【2016屆吉林大學(xué)附中高三第二次模擬】已知為正實(shí)數(shù),直線與曲線相切,則的取值范圍( )(A) (B) (C) (D)【答案】A【解析】,令,為增函數(shù),所以3. 【2016年江西三校第二次聯(lián)考】設(shè)函數(shù)在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的取值范圍是( )A B C D【答案】A【解析】,因?yàn)?,所以?dāng)時(shí),即在上遞減,所以,故選A4. 【湖北2016年9月三校聯(lián)考】已知函數(shù)的圖象如圖所示,則函數(shù)的單調(diào)減區(qū)間為( )A B C D【答案】B5. 【2016年江西師大附中高三月考】已知函數(shù),其在區(qū)間上單調(diào)遞增,則的取值范圍為( )A B C D【答案】C6. 【2016年江西六校聯(lián)考】已知,又,若滿足的有四個(gè),則的取值范圍為( )AB C D【答案】A【解析】,當(dāng)時(shí),恒成立,所以在上為增函數(shù);當(dāng)時(shí),由,得,當(dāng)時(shí),為增函數(shù),當(dāng)時(shí),為減函數(shù),所以函數(shù)在上有一個(gè)最大值為,要使方程,即有四個(gè)實(shí)數(shù)根,令,則方程應(yīng)有兩個(gè)不等根,且一個(gè)根在內(nèi),一個(gè)根在內(nèi),再令,因?yàn)?,則只需,即,解得:;所以,使得函數(shù),方程有四個(gè)實(shí)數(shù)根的的取值范圍是;故選A7. 【河南六市高2016年高三三模】已知函數(shù),關(guān)于的不等式只有兩個(gè)整數(shù)解,則實(shí)數(shù)的取值范圍是( )A B C D【答案】C.【解析】,在上單調(diào)遞增,上單調(diào)遞減,又,不等式只有兩個(gè)整數(shù)解,即實(shí)數(shù)的取值范圍是故選C8.【2016年河北石家莊高三二?!恳阎瘮?shù),若過點(diǎn)可作曲線的兩條切線,且點(diǎn)不在函數(shù)的圖象上,則實(shí)數(shù)的值為_.【答案】或9. 【2016屆山西省忻州一中等四校高三下第四次聯(lián)考】設(shè)函數(shù)()當(dāng)時(shí),求函數(shù)的極值;()若對(duì)任意及任意,恒有 成立,求實(shí)數(shù)的取值范圍.10. 【2016屆安徽師大附中高三最后一卷】定義在上的函數(shù)滿足,.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)區(qū)間;(3)如果滿足,那么稱比更靠近.當(dāng)且時(shí),試比較和哪個(gè)更靠近,并說明理由【解析】(1),令解得由,令得,所以,.(2)因?yàn)?,所?,當(dāng)時(shí),總有,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),由得函數(shù)在上單調(diào)遞增,由得函數(shù)在上單調(diào)遞減;綜上,當(dāng)時(shí),總有,函數(shù)在上單調(diào)遞增;當(dāng)時(shí), 在上單調(diào)遞增, 在上單調(diào)遞減.11. 【湖北省重點(diǎn)中學(xué)2015屆高三上學(xué)期第三次月考試題】已知函數(shù)的導(dǎo)數(shù)為,且滿足關(guān)系式,則的值等于( )A. B.2 C. D. 【答案】C.【解析】因?yàn)椋?,所以,解之?故應(yīng)選C.12.【吉林市普通高中 20142015 學(xué)年度高三畢業(yè)年級(jí)摸底】 已知曲線 在點(diǎn) P(1, 4) 處的切線與直線 l 平行且距離為,則直線 l 的方程為( )A.或 B. C.或 D. 以上都不對(duì)【答案】C【解析】因?yàn)榍€,所以,所以在點(diǎn)P(1,4)處的切線的斜率為-4,方程為4x+y-8=0,與直線l平行且距離為的直線方程為4x+y+c=0,則,所以c=9或-25,因此直線的方程為4x+y+9=0或4x+y-25=0,故選C13.【雅安中學(xué)20142015學(xué)年上期9月試題】已知函數(shù)的兩個(gè)極值點(diǎn)分別為,且,點(diǎn)表示的平面區(qū)域?yàn)?,若函?shù)()的圖象上存在區(qū)域內(nèi)的點(diǎn),則實(shí)數(shù)的取值范圍是( )A. B. C. D.【答案】B14.【2015屆北京市東城區(qū)5月綜合練習(xí)】已知函數(shù) ,,(,為常數(shù))()若在處的切線過點(diǎn),求的值;()設(shè)函數(shù)的導(dǎo)函數(shù)為,若關(guān)于的方程有唯一解,求實(shí)數(shù)的取值范圍;()令,若函數(shù)存在極值,且所有極值之和大于,求實(shí)數(shù)的取值范圍15. 【2015屆湖南省長沙市雅禮中學(xué)高三4月】已知函數(shù)在處取得極值()求實(shí)數(shù)的值; ()若關(guān)于的方程在區(qū)間上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;()證明:對(duì)任意的正整數(shù),不等式都成立【解析】() 時(shí),取得極值, 故解得經(jīng)檢驗(yàn)符合題意() 的定義域?yàn)?由(1)知令得,或(舍去),當(dāng)時(shí), ,單調(diào)遞增;當(dāng)時(shí), ,單調(diào)遞減為在上的最大值,故(當(dāng)且僅當(dāng)時(shí),等號(hào)成立) 對(duì)任意正整數(shù),取得, ,故(方法二)數(shù)學(xué)歸納法證明:當(dāng)時(shí),左邊,右邊,顯然,不等式成立假設(shè)時(shí),成立,則時(shí),有做差比較:構(gòu)建函數(shù),則,單調(diào)遞減,取,即,亦即,故時(shí),有,不等式成立綜上可知,對(duì)任意的正整數(shù),不等式都成立拓展試題以及解析1. 已知函數(shù),為的導(dǎo)函數(shù),則的圖象是( )【答案】A【入選理由】本題主要考查誘導(dǎo)公式、基本初等函數(shù)的求導(dǎo)法則、函數(shù)的圖象等知識(shí),意在考查學(xué)生的識(shí)圖能力、邏輯思維能力.此題難度不大,出題角度較新,故選此題2函數(shù)存在與直線平行的切線,則實(shí)數(shù)的取值范圍是( )A. B. C. D. 【答案】D【解析】因?yàn)?,直線的的斜率為,由題意知方程()有解,因?yàn)?,所以,故選D【入選理由】本題考查導(dǎo)數(shù)的幾何意義、基本不等式等基礎(chǔ)知識(shí),意在考查轉(zhuǎn)化與化歸的思想和基本運(yùn)算能力本題導(dǎo)數(shù)的幾何意義巧妙地與基本不等式結(jié)合起來,出題方式新穎,試題難度不大,同時(shí)對(duì)導(dǎo)數(shù)運(yùn)算的深層次考查,體現(xiàn)靈活運(yùn)用導(dǎo)數(shù)知識(shí)解決問題能力;故選此題.3. 已知函數(shù),若,且,則的取值范圍是( )A. B. C. D. 【答案】A【入選理由】本題主要考查分段函數(shù)與方程的解,導(dǎo)數(shù)與函數(shù)最值等,考查函數(shù)與方程、數(shù)形結(jié)合的數(shù)學(xué)思想,意在考查運(yùn)用轉(zhuǎn)化與化歸思想、綜合分析問題解決問題以及運(yùn)算求解能力及基本的邏輯推理能力導(dǎo)數(shù)的應(yīng)用,是高考考試的重點(diǎn)與難點(diǎn),此題運(yùn)用構(gòu)造法,靈活的利用導(dǎo)數(shù)求最小值,構(gòu)思很巧,故選此題.4. 設(shè)函數(shù)是定義在上的可導(dǎo)函數(shù),當(dāng)時(shí),則函數(shù)的零點(diǎn)個(gè)數(shù)為( )A.0B.1C.2 D.0或 2【答案】A【入選理由】本題主要考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)的零點(diǎn),考查構(gòu)造法以及函數(shù)與方程思想和邏輯推理能力,意在考查運(yùn)用轉(zhuǎn)化與化歸思想、綜合分析問題解決問題以及運(yùn)算求解能力及基本的邏輯推理能力導(dǎo)數(shù)的應(yīng)用,是高考考試的重點(diǎn)與難點(diǎn),此題函數(shù)的單調(diào)性與函數(shù)的零點(diǎn)巧妙地結(jié)合起來,構(gòu)思很巧,故選此題.5. 已知函數(shù), ,若在上有三個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為【答案】 【解析】因?yàn)?,所以若,則,此時(shí)在上至多有兩個(gè)不同的實(shí)數(shù)根,因此,從而由得,因?yàn)?,因此要使在上有三個(gè)不同的實(shí)數(shù)根,須滿足,即,從而實(shí)數(shù)的取值范圍為【入選理由】本題考查函數(shù)圖象、函數(shù)與方程思想、利用導(dǎo)數(shù)研究函數(shù)性質(zhì)等基礎(chǔ)知識(shí),意在考查分析問題與解決問題的能力、基本運(yùn)算能力及推理能力此題難度不大,綜合性較強(qiáng),體現(xiàn)高考小題綜合化的特點(diǎn),故選此題.6. 已知函數(shù)().()若函數(shù)為單調(diào)遞減函數(shù),求實(shí)數(shù)的取值范圍;()當(dāng)時(shí),不等式 恒成立,求的取值范圍.【入選理由】本題主要考查導(dǎo)數(shù)與函數(shù)的最值,導(dǎo)數(shù)與函數(shù)的單調(diào)性、不等式恒成立以及函數(shù)的定義域等,考查分離參數(shù)法、函數(shù)與方程的思想、分類討論的數(shù)學(xué)思想以及基本的運(yùn)算能力和邏輯推理能力等,此題難度較大,綜合性較強(qiáng),符合高考試題特征,故選此題.7. 已知函數(shù)() 若函數(shù)在處的切線過點(diǎn),求的值;()若,求證:;()若恰有三個(gè)不同的零點(diǎn),求的取值范圍【入選理由】本題考查導(dǎo)數(shù)幾何意義、利用導(dǎo)數(shù)證明不等式、利用導(dǎo)數(shù)研究函數(shù)零點(diǎn)等基礎(chǔ)知識(shí),意在考查學(xué)生轉(zhuǎn)化與化歸能力、綜合分析問題和解決問題的能力以及運(yùn)算求解能力本題比較綜合,特別是第二問證明不等式問題是高考??碱}型,故選此題.8. 已知函數(shù),.()當(dāng)時(shí),若不等式在上恒成立,求的取值范圍;()已知且,求證:.【解析】 (1)由題意知,函數(shù)的定義域?yàn)? ,令得.當(dāng)單調(diào)遞增;當(dāng)單調(diào)遞減, 當(dāng)時(shí),不等式在上恒成立,等價(jià)于在上恒成立, 設(shè)函數(shù)由上面可知,在處取得極大值,也是最大值,. 【入選理由】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值及最值、證明不等式等知識(shí),考查考生的化歸與轉(zhuǎn)化能力及運(yùn)算求解能力.(1) 利用導(dǎo)數(shù)研究單調(diào)性求解;(2) 將不等式的證明合理轉(zhuǎn)化為函數(shù)問題求解.此題難度較大,綜合性較強(qiáng),符合高考試題特征,故選此題.