高中數(shù)學(xué)《解三角形的實(shí)際應(yīng)用舉例》課件1(15張PPT)(北師大版必修4)
《高中數(shù)學(xué)《解三角形的實(shí)際應(yīng)用舉例》課件1(15張PPT)(北師大版必修4)》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)《解三角形的實(shí)際應(yīng)用舉例》課件1(15張PPT)(北師大版必修4)(18頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
,歡迎進(jìn)入數(shù)學(xué)課堂,,解三角形實(shí)際應(yīng)用舉例,1、正弦定理,2、余弦定理,解應(yīng)用題中的幾個角的概念,1、仰角、俯角的概念:在測量時,在同一鉛垂面的水平線和目標(biāo)視線的夾角,視線在水平線上方的角叫仰角,在水平線下方的角叫做俯角。如圖:,2、方向角:指北或指南方向線與目標(biāo)方向線所成的小于90的水平角,叫方向角,如圖,解三角形實(shí)際應(yīng)用舉例,解應(yīng)用題的一般步驟,1.審題,,3、坡度與坡角:坡面與水平面的夾角叫坡角,坡面與垂直高度h和水平寬度l的比叫坡度,h,l,,(3)如圖,在200m高的山頂A處,測得山下一塔頂C與塔底D的俯角分別是30?,60?,則塔高是米。,自主測評,(1)在某次測量中,A在B的北偏東437,則B在A的()(A)南偏西437‘(B)北偏東437(C)北偏西4653‘(D)南偏西4653,C,(2)有一長為10米的斜坡,它的傾斜角為,在不改變坡高和坡頂?shù)那疤嵯?,通過加長坡面的方法,將它的傾斜角改為,則坡底要延長()(A)5m(B)10m(C)m(D)m,C,,解三角形實(shí)際應(yīng)用舉例,,,例1.如圖,自動卸貨汽車采用液壓機(jī)構(gòu),設(shè)計(jì)時需要計(jì)算油泵頂桿BC的長度(如圖).已知車廂的最大仰角為60,油泵頂點(diǎn)B與車廂支點(diǎn)A之間的距離為1.95m,AB與水平線之間的夾角為,AC長為1.40m,計(jì)算BC的長度(結(jié)果精確到0.01m).,(1)什么是最大仰角?,(2)例題中涉及一個怎樣的三角形?,,,,,在△ABC中已知什么,要求什么?,,,,,,,,,,例題講解:測量距離與邊長,,實(shí)例講解,解:由余弦定理,得,答:頂杠BC長約為1.89m.,1.40m,1.95m,試一試:,從地平面A、B、C三點(diǎn)測得某山頂?shù)难鼋蔷鶠?5,設(shè)∠BAC=30,而BC=200m.求山高(結(jié)果精確到0.1m),,例2、如圖,要測底部不能到達(dá)的煙囪的高AB,從與煙囪底部在同一水平直線上的C、D兩處,測得煙囪的仰角分別是,,CD間的距離是12m.已知測角儀器高1.5m,求煙囪的高。(精確到0.01米),圖中給出了怎樣的一個幾何圖形?已知什么,求什么?,想一想,例題講解:測量高度,,實(shí)例講解,分析:如圖,因?yàn)锳B=AA1+A1B,又已知AA1=1.5m,所以只要求出A1B即可。,解:,答:煙囪的高為29.89m.,,試一試:,如圖所示,在加工縫紉機(jī)挑線桿時,需要計(jì)算A,C兩孔中心的距離,已知BC=60.5mm,AB=15.8mm,∠ABC=80,則AC=mm(結(jié)果精確到0.01mm),(1)解決實(shí)際應(yīng)用問題的關(guān)鍵思想方法是把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,即數(shù)學(xué)建模思想。,(2)解決實(shí)際應(yīng)用問題的步驟,實(shí)際問題,,數(shù)學(xué)問題(畫出圖形),,解三角形問題,,數(shù)學(xué)結(jié)論,,分析轉(zhuǎn)化,檢驗(yàn),總結(jié)提升,能力拓展,1、如圖,B、C、D在地平面同一直線上,DC=100m,從D、C兩地測得A的仰角分別為30和45,則點(diǎn)A離地面的高AB等于()(A)100m(B)m(C)m(D)m,2、已知兩燈塔A、B與海洋觀察站C的距離都等于akm,燈塔A在觀察站C的北偏東20,燈塔B在C的南偏東40,則燈塔A與燈塔B的距離為,3、如圖,在山底測得山頂仰角∠CAB=45,沿傾斜角為30的斜坡走1000m至S點(diǎn),又測得山頂仰角∠DSB=75,則山高BC為()(A)1000m(B)1100m(C)1200m(D)1300m,,課堂小結(jié),1、本節(jié)課通過舉例說明了解斜三角形在實(shí)際中的一些應(yīng)用。掌握利用正弦定理及余弦定理解任意三角形的方法。,2、在分析問題解決問題的過程中關(guān)鍵要分析題意,分清已知與所求,根據(jù)題意畫出示意圖,并正確運(yùn)用正弦定理和余弦定理解題。,3、在解實(shí)際問題的過程中,貫穿了數(shù)學(xué)建模的思想,其流程圖可表示為:,實(shí)際問題,數(shù)學(xué)模型,實(shí)際問題的解,數(shù)學(xué)模型的解,,作業(yè):,教材P62A組第4題B組第1題,再見,謝謝,再見,同學(xué)們,來學(xué)校和回家的路上要注意安全,同學(xué)們,來學(xué)校和回家的路上要注意安全,- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
10 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 解三角形的實(shí)際應(yīng)用舉例 高中數(shù)學(xué) 三角形 實(shí)際 應(yīng)用 舉例 課件 15 PPT 北師大 必修
鏈接地址:http://m.italysoccerbets.com/p-12169721.html