《人教版初一數(shù)學總復習資料全【完整教資】》由會員分享,可在線閱讀,更多相關《人教版初一數(shù)學總復習資料全【完整教資】(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
?人教版七年級數(shù)學上冊期末總復習
第一章有理數(shù)
1.有理數(shù):
(1)凡能寫成 形式的數(shù),都是有理數(shù),整數(shù)和分數(shù)統(tǒng)稱有理數(shù).
注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(3)自然數(shù)? 0和正整數(shù);?? a>0 ? a是正數(shù);????? a<0 ? a是負數(shù);
a≥0 ? a是正數(shù)或0 ? a是非負數(shù);?????? a≤ 0 ? a是負數(shù)或0 ? a是非正數(shù)
2、.
2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.
3.相反數(shù):(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;?? (2)注意: a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
(3)相反數(shù)的和為0 ? a+b=0 ? a、b互為相反數(shù).
(4)相反數(shù)的商為-1.
(5)相反數(shù)的絕對值相等?
4.絕對值:
(1)正數(shù)的絕對值等于它本身,0的絕對值是0,負數(shù)的絕對值等于它的相反數(shù);
注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
(2) |a|是重要的非負數(shù),即|a|≥0;
3、
5.有理數(shù)比大?。?
(1)正數(shù)永遠比0大,負數(shù)永遠比0小;
(2)正數(shù)大于一切負數(shù);
(3)兩個負數(shù)比較,絕對值大的反而小;
(4)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;
(5)-1,-2,+1,+4,-0.5,以上數(shù)據(jù)表示與標準質量的差,? 絕對值越小,越接近標準。
6.倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);
注意:0沒有倒數(shù);?? 若ab=1? a、b互為倒數(shù);???????? 若ab=-1? a、b互為負倒數(shù).
相反數(shù)等于本身的數(shù):0
倒數(shù)等于本身的數(shù):1,-1
絕對值等于本身的數(shù):正數(shù)和0
平方等于本身的數(shù):0,1
立方等于本身的數(shù):0,1,-
4、1.
7. 有理數(shù)加法法則:?
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,取絕對值較大加數(shù)的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數(shù)與0相加,仍得這個數(shù).
8.有理數(shù)加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).
10 有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個因式都不為零,積的符號由負因式的個數(shù)決定.奇數(shù)個負數(shù)為負,偶
5、數(shù)個負數(shù)為正。
11 有理數(shù)乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .(簡便運算)
12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù), .
13.有理數(shù)乘方的法則:(1)正數(shù)的任何次冪都是正數(shù);
???????????????????? (2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);
14.乘方的定義:(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結果叫做冪;
(3)a2是重要的非負數(shù),即a2≥0;
6、 若a2+|b|=0 ? a=0,b=0;
(4)據(jù)規(guī)律?? 底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位.
15.科學記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學記數(shù)法.
16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.
17.混合運算法則:先乘方,后乘除,最后加減;?????????? 注意:不省過程,不跳步驟。
18.特殊值法:是用符合題目要求的數(shù)代入,并驗證題設成立而進行猜想的一種方法,但不能用于證明.常用于填空,選擇。
第二章 整式的加減??
1.單項式:表示數(shù)字或字母乘積的式子
7、,單獨的一個數(shù)字或字母也叫單項式。
?2.單項式的系數(shù)與次數(shù):單項式中的數(shù)字因數(shù),稱單項式的系數(shù);
單項式中所有字母指數(shù)的和,叫單項式的次數(shù).
3.多項式:幾個單項式的和叫多項式.??
4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);? .
5.同類項:? 所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項.
6.合并同類項法則:??? 系數(shù)相加,字母與字母的指數(shù)不變.
7.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;??? 若括號前邊是“-”號,括號里的各項
8、都要變號.
8.整式的加減:一找:(劃線);二“+”(務必用+號開始合并)三合:(合并)
9..多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到?。┡帕衅饋?,叫做按這個字母的升冪排列(或降冪排列).
第三章? 一元一次方程??
?1.等式的性質:?
等式性質1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結果仍是等式;
等式性質2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結果仍是等式.
3.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!
4.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是
9、等式性質1.
5.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.
6.一元一次方程的標準形式: ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).
7.一元一次方程解法的一般步驟:
?化簡方程----------分數(shù)基本性質
?去? 分母----------同乘(不漏乘)最簡公分母
?去? 括號----------注意符號變化
移??? 項----------變號(留下靠前)
合并同類項--------合并后符號?
系數(shù)化為1---------除前面
8.列一元一次方程解應用題:?
(1)讀題分析法:……
10、…… 多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據(jù)題意設出未知數(shù),最后利用題目中的量與量的關系填入代數(shù)式,得到方程.
(2)畫圖分析法: ………… 多用于“行程問題”
利用圖形分析數(shù)學問題是數(shù)形結合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關系(可把未知數(shù)看做已知量),填入有關的代數(shù)式是獲得方程的基礎.
11.列方程解應用題的常用公式:
11、(1)行程問題:? 距離=速度?時間???????? ;
(2)工程問題:? 工作量=工效?工時??????? ;
工程問題常用等量關系:??? 先做的+后做的=完成量?
(3)順水逆水問題:?
順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
? 順水逆水問題常用等量關系:??? 順水路程=逆水路程
(4)商品利潤問題:? 售價=定價? ,? ;
利潤問題常用等量關系:???? 售價-進價=利潤
?(5)配套問題:
(6)分配問題
第四章 圖形初步認識
(一)多姿多彩的圖形
立體圖形:棱柱、棱錐、圓柱、圓錐、球等.
1、幾何圖形
平面圖形:三角形、四邊
12、形、圓等.
主(正)視圖---------從正面看
2、幾何體的三視圖 側(左、右)視圖-----從左(右)邊看
俯視圖---------------從上面看
(1)會判斷簡單物體(直棱柱、圓柱、圓錐、球)的三視圖.
(2)能根據(jù)三視圖描述基本幾何體或實物原型.
3、立體圖形的平面展開圖
(1)同一個立體圖形按不同的方式展開,得到的平現(xiàn)圖形不一樣的.
(2)了解直棱柱、圓柱、圓錐、的平面展開圖,能根據(jù)展開圖判斷和制作立體模型.
4、點、線、面、體
(1)幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形最基本的圖形.
線:面和面相交的地方是線,分為直線和曲線.
面
13、:包圍著體的是面,分為平面和曲面.
體:幾何體也簡稱體.
(2)點動成線,線動成面,面動成體.
(二)直線、射線、線段
1、基本概念
圖形?直線?射線?線段
端點個數(shù)?無?一個?兩個
表示法?直線a
直線AB(BA)?射線AB?線段a
線段AB(BA)
作法敘述?作直線AB;
作直線a?作射線AB?作線段a;
作線段AB;
連接AB
延長敘述?不能延長?反向延長射線AB?延長線段AB;
反向延長線段BA
2、直線的性質
經過兩點有一條直線,并且只有一條直線.
簡單地:兩點確定一條直線.?
3、線段的中點(二等分點)、三等分點、四等分點等
定義:把一條線段
14、平均分成兩條相等線段的點.
符號:若點M是線段AB的中點,則AM=BM=AB,AB=2AM=2BM.
4、線段的性質
兩點的所有連線中,線段最短.簡單地:兩點之間,線段最短.
5、兩點的距離
連接兩點的線段長度叫做兩點的距離.
(三)角
1、角:由公共端點的兩條射線所組成的圖形叫做角.
2、角的表示法(四種):
3、角的度量單位及換算
4、角的分類
∠β?銳角? 直角? 鈍角? 平角 ?周角
范圍?0<∠β<90°? ∠β=90°? 90°<∠β<180°? ∠β=180°? ∠β=360°
15、
5、互余、互補
(1)若∠1+∠2=90°,則∠1與∠2互為余角.其中∠1是∠2的余角,∠2是∠1的余角.
(2)若∠1+∠2=180°,則∠1與∠2互為補角.其中∠1是∠2的補角,∠2是∠1的補角.
(3)余(補)角的性質:等角的補(余)角相等.
(4)兩條直線相交,有公共頂點但沒有公共邊的兩個角叫做對頂角;或者一個角的反相延長線與這個角是對頂角。 對頂角的性質:對頂角相等。
(5)兩條直線相交,有公共頂點且有一條公共邊的兩個角互為鄰補角。 (相鄰且互補)
(四)、三線八角: 兩直線被第三條直線所截
①在兩直線的相同位置上,在第三條直線的同側(旁)的兩個角叫做同位角。
16、
②在兩直線之間(內部),在第三條直線的兩側(旁)的兩個角叫做內錯角。
③在兩直線之間(內部),在第三條直線的同側(旁)的兩個角叫做同旁內角。
三、平行線的判定
①同位角相等
②內錯角相等 兩直線平行
③同旁內角互補
四、平行線的性質
①兩直線平行,同位角相等。
②兩直線平行,內錯角相等。
③兩直線平行,同旁內角互補。
第三章 三角形
一、認識三角形
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形。
2、三角形三邊的關系:兩邊之和大于第三邊;兩邊之差小于第三邊。
(已知三條線段確定能否組成三角形,已知兩邊求第三邊的取值范圍)
3
17、、三角形的內角和是180°;直角三角形的兩銳角互余。
銳角三角形 (三個角都是銳角)
4、三角形按角分類直角三角形 (有一個角是直角)
鈍角三角形 (有一個角是鈍角)
5、三角形的特殊線段:
a) 三角形的中線:連結頂點與對邊中點的線段。 (分成的兩個三角形面積相等)
b) 三角形的角平分線:內角平分線與對邊的交點到內角所在的頂點的線段。
c) 三角形的高:頂點到對邊的垂線段。 (每一種三角形的作圖)
二、全等三角形:
1、全等三角形:能夠重合的兩個三角形。
2、全等三角形的性質:全等三角形的對應邊、對應角相等。
3、全等三角形的判定:
18、
判定方法
邊邊邊 三邊對應相等的兩個三角形全等
SSS
邊角邊 兩邊與這兩邊的夾角對應相等的兩個三角形全等
SAS
角邊角 兩角與這兩角的夾邊對應相等的兩個三角形全等
ASA
角角邊 兩角與其中一個角的對邊對應相等的兩個三角形全等
AAS
斜邊直角邊 斜邊與一條直角邊對應相等的兩個直角三角形全等
HL
注意:三個角對應相等的兩個三角形不能判定兩個三角形形全等;AAA
兩條邊與其中一條邊的對角對應相等的兩個三角形不能判定兩個三角三角形全等。SSA
4、全等
19、三角形的證明思路:
條 件 下一步的思路 運用的判定方法
已經兩邊對應相等 找它們的夾角
SAS
找第三邊
SSS
已經兩角對應相等 找它們的夾邊
ASA
找其中一個角的對邊
AAS
已經一角一邊 找另一個角
ASA或AAS
找另一邊
SAS
四、等腰三角形性質: (有兩條邊相等的三角形叫做等腰三角形)
①等腰三角形是軸對稱圖形; (一條對稱軸)
?、诘妊切蔚走吷现芯€,底邊上的高,頂角的平分線重合; (三線合一)
?、鄣妊切蔚膬蓚€底角相等。 (簡稱:等邊對等角)
五、在一個三角形中,如果有兩個角相等,那么它所對的兩條邊也相等。(簡稱:等角對等邊)
六、等邊三角形的性質:等邊三角形是特殊的等腰三角形,它具有等腰三角形的所有性質。
?、?等邊三角形的三條邊相等,三個角都等于60; ②等邊三角形有三條對稱軸。
8
系統(tǒng)教學#