《數(shù)學第1章 數(shù)與式 第1課時 實數(shù)及其運算》由會員分享,可在線閱讀,更多相關《數(shù)學第1章 數(shù)與式 第1課時 實數(shù)及其運算(23頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第一單元 數(shù)與式第1課時 實數(shù)及其運算考綱考點考綱考點1.有理數(shù)的概念(1)有理數(shù)的意義、數(shù)軸、相反數(shù)、絕對值的概念(2)有理數(shù)大小的比較(3)科學記數(shù)法2.有理數(shù)的運算(1)有理數(shù)的加、減、乘、除、乘方運算(2)有理數(shù)的混合運算(以三步以內為主)(3)有理數(shù)的運算律(4)運用有理數(shù)的運算解決簡單的問題3.實數(shù)(1)無理數(shù)、實數(shù)的概念,實數(shù)與數(shù)軸上的點一一對應(2)實數(shù)的相反數(shù)與絕對值(3)用有理數(shù)估計無理數(shù)的大致范圍(4)近似數(shù)近幾年安徽中考分值都不少于12分,考題數(shù)3題,科學記數(shù)近5年都考查了,預測2017年安徽中考記數(shù)仍將考查,另兩考題肯定是壓倒數(shù)、相反數(shù)、絕對值、數(shù)軸、無理數(shù)以及實數(shù)的
2、運算、比較大小等知識點中考查.知識體系圖知識體系圖實數(shù)及其運算概念 分類 運算數(shù)軸相反數(shù)絕對值科學計數(shù)法近似數(shù)按正負數(shù)分按定義分正實數(shù)零負實數(shù)有理數(shù)無理數(shù)加減法乘除法乘方運算律1.1 實數(shù)的有關概念實數(shù)的有關概念1、數(shù)軸:規(guī)定了原點,正方向和單位長度的直線叫做數(shù)軸,數(shù)軸上所有的點與全體實數(shù)一一對應2、相反數(shù):只有符號不同,而絕對值相同的兩個數(shù)稱為互為相反數(shù)a,b互為相反數(shù)ab03、倒數(shù):1除以一個不等于零的實數(shù)所得的商,叫做這個數(shù)的倒數(shù)a,b互為倒數(shù)ab14、絕對值:在數(shù)軸上一個數(shù)對應的點離原點的距離,叫作這個數(shù)的絕對值.丨a丨是一個非負數(shù),即丨a丨0.5、平方根,算術平方根,立方根:如果x2
3、a,那么x叫做a的平方根,記作x=;正數(shù)a的正的平方根,叫做這個數(shù)的算術平方根;如果x3a,那么x叫做a的立方根,記作 .1.2 實數(shù)的分類實數(shù)的分類1、按實數(shù)的定義分類 2、按正負數(shù)分根據(jù)需要,我們也可以將實數(shù)按符號進行分類,如:1.3 實數(shù)大小的比較實數(shù)大小的比較1、正數(shù)大于零,負數(shù)小于零,正數(shù)大于一切負數(shù);兩個正數(shù)絕對值大的較大;兩個負數(shù),絕對值較大的反而小.2、利用數(shù)軸:在數(shù)軸上表示的兩個實數(shù),右邊的數(shù)總是大于左邊的數(shù).3、設a、b是任意的實數(shù),a-b0 ab;a-b=0 a=b;a-b0 ab.4、設a、b是正實數(shù),ab;=1 a=b;abbababa.4 實數(shù)的運算實數(shù)的運算實數(shù)的
4、運算順序是先算乘方和開方,再算乘除,最后算加減,如果有括號,先算小括號,再算中括號,最后算大括號,同級運算應從左到右依次進行.1.5 科學計數(shù)法與近似數(shù)科學計數(shù)法與近似數(shù)1、科學計數(shù)法把一個數(shù)寫成a10的形式(其中1丨a丨10,n為整數(shù)),這種計數(shù)法叫作科學計數(shù)法.(1)當原數(shù)大于或等于1時,n等于原數(shù)的整數(shù)位數(shù)減一.(2)當原數(shù)小于1時,n是負整數(shù),它的絕對值等于原數(shù)中左起第一個非零數(shù)字前零的個數(shù)(含小數(shù)點前的零).2、近似數(shù)一個近似數(shù),四舍五入到哪一位,就說這個近似數(shù)精確到哪一位.1.6 實數(shù)中的非負數(shù)及其性質實數(shù)中的非負數(shù)及其性質1、任何一個實數(shù)a的絕對值是非負數(shù),即丨a丨0;2、任何一
5、個實數(shù)a的平方是非負數(shù),即a0;3、任何非負數(shù)a的n次算術根是非負數(shù).有關實數(shù)及其運算的一些解題思路與方法有關實數(shù)及其運算的一些解題思路與方法數(shù)形結合思想數(shù)形結合思想是指將數(shù)(量)與(圖)形結合起來進行分析、研究、解決問題的一種思想策略“數(shù)無形,少直觀;形無數(shù),難入微”數(shù)形結合思想可以使問題化難為易、化繁為簡分類討論思想分類討論思想是“化整為零,各個擊破,再積零為整”的數(shù)學策略,分類注意按一定的標準進行;分類既不能遺漏,也不能交叉重復化歸思想化歸也稱轉化,是指將未知的、陌生的、復雜的問題通過演繹歸納轉化為已知的、熟悉的、簡單的問題,從而使問題順利解決的數(shù)學思想,關鍵是確定合理、可行的轉化目標,
6、掌握基本的方法步驟五種大小比較方法實數(shù)的大小比較常用以下五種方法:(1)數(shù)軸比較法:將兩數(shù)表示在數(shù)軸上,右邊的點表示的數(shù)總比左邊的點表示的數(shù)大(2)代數(shù)比較法:正數(shù)大于零;負數(shù)小于零;正數(shù)大于一切負數(shù);兩個負數(shù),絕對值大的數(shù)反而?。?)差值比較法:設a、b是兩個任意實數(shù),則:a-b0 ab;a-b=0 a=b;a-b0 ab.(4)倒數(shù)比較法:若a0,b0,且1/a1/b,則ab.(5)平方比較法:比較a、b的大小問題.【例1】(2014年合肥模擬)實數(shù),0,-1中,無理數(shù)是(A)A.B.C.0 D.-1 【解析】判斷一個數(shù)是不是無理數(shù),關鍵看它是否能寫成無限不循環(huán)小數(shù),初中常見的無理數(shù)分為三
7、類:(1)簡化后含(圓周率)的式子;(2)含根號且開不盡方的數(shù);(3)有規(guī)律但不循環(huán)的無限小數(shù).掌握常見無理數(shù)的類型,有助于識別無理數(shù).【例2】(2014年重慶)計算:解:原式=2+9-14+6=11-4+6=13【解析】實數(shù)運算要嚴格按照法則進行,特別是混合運算,注意符號和順序是非常重要的【例3】(2015年江西)2015年初,一列 CRH5 型高速車組進行了“300 000公里正線運營考核”,標志著中國高鐵車從“中國制造”到“中國創(chuàng)新”的飛躍.將數(shù)300 000用科學計數(shù)法表示為 (B)A.3106 B.3105 C.0.3106 D.30104【解析】本題考查了科學計數(shù)法的表示方法.科學
8、計數(shù)法的表示形式為a10的形式,其中1丨a丨10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.【例4】(1)(2014年河北)-2是2的 (B)A.倒數(shù) B.相反數(shù) C.絕對值 D.平方根 (2)已知|a|1,|b|2,|c|3,且abc,那么abc=2或0.(3)設|a|4,|b|2,且|ab|(ab),試求ab所有值的和 解:|a|4,|b|2,a4,b2,又|ab|(ab)0,ab0,可知a4,b2,所以ab426,或ab 4(2)2,6(2)8,ab所有值的和是8.【解析】(1)互為相反數(shù)的兩個數(shù)和為0;(2)正數(shù)的絕對值是它本身,負數(shù)的絕對值是它的相反數(shù),0的絕對值是0;(3)兩
9、個非負數(shù)的和為0,則這兩個數(shù)分別等于0.【例5】(2015年金華)如圖,數(shù)軸A,B,C,D四點中,與 表示的點最接近的是 (B)A.點A B.點B C.點C D.點D【解析】由于134,所以 1 2,又因為3離4較近,故 離2較近,-2 -1,且 距離-2較近,故選擇B.33333【例6】(1)(2014年紹興)比較-3,1,-2的大小,下列判斷正確的是(A)A.-3-21 B.-2-31 C.1-2-3 D.1-3-2 (2)(2014年河北)a,b是兩個連續(xù)整數(shù),若a b,則a,b 分別是 (A)A.2,3 B.3,2 C.3,4 D.6,8【解析】實數(shù)的大小比較要依據(jù)數(shù)值特點來靈活運用比較大小的幾種方法來進行7