購買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請(qǐng)見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
畢業(yè)設(shè)計(jì)成績(jī)?cè)u(píng)定手冊(cè)
論 文 題 目
輪式裝載機(jī)設(shè)計(jì)
學(xué) 生 姓 名
專 業(yè)
機(jī)械電子工程
班 級(jí) 學(xué) 號(hào)
指 導(dǎo) 教 師
分 院
2012年6月
畢業(yè)設(shè)計(jì) 成績(jī)?cè)u(píng)定表
(指導(dǎo)教師用)
姓 名
班級(jí)學(xué)號(hào)
0852110
專 業(yè)
機(jī)械電子工程
題 目
輪式裝載機(jī)設(shè)計(jì)
評(píng) 價(jià) 要 素
權(quán) 重
評(píng) 分
成 績(jī)
選 題
0.10
調(diào) 查 報(bào) 告
0.10
創(chuàng) 新 性
0.10
基礎(chǔ)理論與基本技能
0.20
撰 寫 質(zhì) 量
0.20
可 行 性
0.15
學(xué)風(fēng)與工作作風(fēng)
0.15
指導(dǎo)教師評(píng)定成績(jī)(合計(jì))
指導(dǎo)教師評(píng)語:
指導(dǎo)教師簽字:
年 月 日
畢業(yè)設(shè)計(jì) 成績(jī)?cè)u(píng)定表
(評(píng)閱人用)
姓 名
班級(jí)學(xué)號(hào)
專 業(yè)
機(jī)械電子工程
題 目
輪式裝載機(jī)設(shè)計(jì)
評(píng) 價(jià) 要 素
權(quán) 重
評(píng) 分
成 績(jī)
選 題
0.15
調(diào) 查 報(bào) 告
0.15
創(chuàng) 新 性
0.15
基礎(chǔ)理論與基本技能
0.20
撰 寫 質(zhì) 量
0.20
可 行 性
0.15
評(píng)閱人評(píng)定成績(jī)(合計(jì))
評(píng)閱人評(píng)語:
評(píng)閱人簽字:
年 月 日
畢業(yè)設(shè)計(jì) 成績(jī)?cè)u(píng)定表
(答辯委員會(huì)用)
姓 名
班級(jí)學(xué)號(hào)
專 業(yè)
機(jī)械電子工程
題 目
輪式裝載機(jī)設(shè)計(jì)
評(píng) 價(jià) 要 素
權(quán) 重
評(píng) 分
成 績(jī)
選 題
0.15
調(diào) 查 報(bào) 告
0.10
創(chuàng) 新 性
0.10
基礎(chǔ)理論與基本技能
0.10
撰 寫 質(zhì) 量
0.10
可 行 性
0.15
答 辯
0.30
答辯委員會(huì)評(píng)定成績(jī)(合計(jì))
答辯委員會(huì)評(píng)語:
答辯委員會(huì)主席簽字:
年 月 日
答辯委員會(huì)記錄
答辯學(xué)生姓名: 班級(jí):
答辯記錄:
答辯委員會(huì)主席簽名:
年 月 日
本件在學(xué)生本人論文留存
答辯委員會(huì)委員名單
主席:
委員:
秘書:
畢業(yè)設(shè)計(jì)綜合成績(jī)表
姓 名
專 業(yè)
機(jī)械電子工程
班 級(jí)
1
題 目
輪式裝載機(jī)設(shè)計(jì)
指導(dǎo)教師評(píng)定成績(jī)
(X)
評(píng) 閱 人
評(píng)定成績(jī)
(Y)
答辯委員會(huì)評(píng)定成績(jī)
(Z)
0.3X+0.3Y+0.4Z
等 級(jí)
填表人: 教學(xué)副院長:
本件投學(xué)生本人檔案
答辯委員會(huì)委員名單
主席:
委員:
秘書:
畢業(yè)設(shè)計(jì)綜合成績(jī)表
姓 名
專 業(yè)
機(jī)械電子工程
班 級(jí)
題 目
輪式裝載機(jī)設(shè)計(jì)
指導(dǎo)教師評(píng)定成績(jī)
(X)
評(píng) 閱 人
評(píng)定成績(jī)
(Y)
答辯委員會(huì)評(píng)定成績(jī)
(Z)
0.3X+0.3Y+0.4Z
等 級(jí)
填表人: 教學(xué)副院長:
摘要
輪式裝載機(jī)屬于鏟土運(yùn)輸機(jī)械類,是一種廣泛用于公路、鐵路、建筑、水電、港口和礦山等建設(shè)工程的土石方施工機(jī)械。具有作業(yè)速度快、效率高、機(jī)動(dòng)性好、操作輕便等優(yōu)點(diǎn),對(duì)于加快工程建設(shè)速度,減輕勞動(dòng)強(qiáng)度,提高工程質(zhì)量,降低工程成本都發(fā)揮著重要的作用,是現(xiàn)代機(jī)械化施工中不可缺少的裝備之一。
本次設(shè)計(jì)以模塊的方式論述了輪式裝載機(jī)的發(fā)展以及用途、分類和相關(guān)參數(shù)、總體構(gòu)造、傳動(dòng)系統(tǒng)、制動(dòng)系統(tǒng)、轉(zhuǎn)向系統(tǒng)、工作裝置和液壓系統(tǒng)的組成。在用途和分類中對(duì)裝載機(jī)的發(fā)動(dòng)機(jī)功率、傳動(dòng)形式、行走結(jié)構(gòu)、裝卸方式?做了簡(jiǎn)單的介紹。通過選用原則的敘述,使我們對(duì)裝載機(jī)使用性能有進(jìn)一步的了解。另外,簡(jiǎn)單列舉了國內(nèi)外輪式裝載機(jī)發(fā)展現(xiàn)狀。眾所周知現(xiàn)在我國已成為全球矚目的裝載機(jī)生產(chǎn)大國,但我們還僅僅是制造“大”國,而不是制造“強(qiáng)”國。自主創(chuàng)新能力不足,缺少具有自主知識(shí)產(chǎn)權(quán)和較強(qiáng)國際競(jìng)爭(zhēng)力的產(chǎn)品是根本原因。開發(fā)具有自主知識(shí)產(chǎn)權(quán)的核心技術(shù),盡快縮短與國外大公司間的技術(shù)差距,提升產(chǎn)品的國際市場(chǎng)競(jìng)爭(zhēng)力,是擺在國內(nèi)裝載機(jī)企業(yè)面前一個(gè)十分迫切的問題。
關(guān)鍵詞:輪式裝載機(jī) 總體構(gòu)造 傳動(dòng)系統(tǒng) 制動(dòng)系統(tǒng) 轉(zhuǎn)向系統(tǒng) 自動(dòng)換擋 只能控制
Abstract
Wheel loader shovel soil mechanical belongs to transportation, is a widely used for highway, railway, construction, water and electricity, ports and mining and other construction engineering conditions of construction machinery. Work with speed, high efficiency and convenient operation, good mobility etc, and to speed up the construction speed, reduce labor intensity, improving engineering quality, reduce the cost for the project is an important role, is the modern mechanical construction of one of the indispensable equipment.
The design for the module way discusses the development and application of the wheel loader, classification and related parameters, general structure, transmission system, braking system, steering system, work device and the composition of the hydraulic system. In the use of the loader and classification of engine power, transmission form, and walking, structure, loading and unloading way do briefly introduced. Through the selection principle of narrative that we use to loader have further understanding of performance. In addition, simple summarizes the current situation of the development of wheel loader. As is known to all now China's has become a global attention the loader production country, but we still only a manufacturing "big" countries, and not to make "strong" countries. The independent innovation ability is insufficient, with independent intellectual property rights and the lack of a stronger international competitiveness of the products was the reason. Development with independent intellectual property rights of the core technology, shorten and foreign big company as soon as possible the technology gap between, improve product international market competition ability, is in the domestic front loader enterprise a very urgent question.
長春理工大學(xué)光電信息學(xué)院
畢業(yè)設(shè)計(jì)(論文)題目申報(bào)表
院 別 機(jī)電工程分院
教 研 室
指導(dǎo)教師 職稱 教授
職稱
年 月 日
題目名稱
輪式裝載機(jī)設(shè)計(jì)
題 目
類 別
設(shè)計(jì)類
√
題目
性質(zhì)
結(jié)合實(shí)際
√
專
業(yè)
機(jī)械電子工程
參加本題目
學(xué)生人數(shù)
1
論文類
虛擬題目
題目來源、教師準(zhǔn)備情況、主要培養(yǎng)學(xué)生哪些能力
課題來源:由指導(dǎo)教師擬訂結(jié)合我國機(jī)械制造及機(jī)電設(shè)計(jì)市場(chǎng)發(fā)展?fàn)顩r,進(jìn)行設(shè)計(jì)的課題。
教師準(zhǔn)備狀況:從事機(jī)械設(shè)計(jì)制造及其自動(dòng)化領(lǐng)域的教學(xué)與研究30年,自1999年起自擬并指導(dǎo)該方向的畢業(yè)設(shè)計(jì)題目整10年,有一定的研究基礎(chǔ)。
主要培養(yǎng)學(xué)生哪些能力:文獻(xiàn)查閱與實(shí)際調(diào)研能力:外文資料翻譯能力:基礎(chǔ)理論與專業(yè)知識(shí)的綜合應(yīng)用能力:數(shù)據(jù)資料的采集、處理、與分析能力、:計(jì)算機(jī)應(yīng)用能力。
題 目 內(nèi) 容 及 要 求
內(nèi)容:從輪胎式專用底盤為基礎(chǔ)車,配置在、工作裝置及其操作系統(tǒng),完成裝料,行走及其、卸料工作
要求:完成工作裝置的總體設(shè)計(jì)、鏟斗、連桿。動(dòng)臂,搖臂的結(jié)構(gòu)設(shè)計(jì)及其、校核
實(shí)
踐
環(huán)
節(jié)
安
排
實(shí)習(xí)
去工廠、研究所或上網(wǎng)進(jìn)行社會(huì)調(diào)查
實(shí)驗(yàn)
輪式裝載機(jī)仿真實(shí)驗(yàn)
計(jì)算機(jī)應(yīng)用
CAD繪圖
中、外文參考資料:
[1] 楊占敏.輪式裝載機(jī)設(shè)計(jì)[M].北京:化學(xué)工業(yè)出版社,1982.
[2] 于碩.裝載機(jī)工作裝置的機(jī)構(gòu)分析[J]. 工程機(jī)械,2001(8):25-27
[3] 申文清.輪式裝載機(jī)工作裝置的建模及優(yōu)化研究[J]. 筑路機(jī)械與施工機(jī)械化, 2006(4):43-45
[4] 張青.工程機(jī)械概論[M].北京:化學(xué)工業(yè)出版社,2009.
[5] 何正忠.裝載機(jī)[M].北京:冶金工業(yè)出版社,1999.
[6]Shimoda,Masatoshi.Multiob jrctive shape optimization of linearelastic structures considering multipe loading conditions[J],material engineering,v39,n3.jul1996:407-414
[7] Hyde J M ., Cutkosky M .R.Controlling contact transition.
IEEE Contro1 Systems[J],1994,14(1):25-30
[8] Ii Z.X.,Qin Z.,Jiang S.et a1.Coordinated motion generation
and real-time grasping force control for multi-fingered manipulation. Proceedings of the IEEE Internationa1 Conference on Robotics and Automation[M],1998,3631-3638
[
教研室主任
審批簽字
李春梅
分 院 院 長
審批簽字
劉薇娜
注:題目類別和題目性質(zhì)請(qǐng)用符號(hào)√填在相應(yīng)欄內(nèi)。
長春理工大學(xué)光電信息學(xué)院學(xué)生畢業(yè)設(shè)計(jì)(論文)登記表
分院
機(jī)電工程分院
專業(yè)
機(jī)械電子工程
班級(jí)
學(xué)生姓名
指導(dǎo)教師
設(shè)計(jì)(論文)起止日期
教研室主任
題目名稱(包括主要技術(shù)參數(shù))及要求:
題目名稱:輪式裝載機(jī)設(shè)計(jì)
內(nèi)容:從輪胎式專用底盤為基礎(chǔ)車,配置在、工作裝置及其操作系統(tǒng),完成裝料,行走及其、卸料工作
要求:完成工作裝置的總體設(shè)計(jì)、鏟斗、連桿。動(dòng)臂,搖臂的結(jié)構(gòu)設(shè)計(jì)及其、校核
技術(shù)參數(shù):額定載重量(1.5T)、鏟斗容量(0.9m3)
行駛速度(8~~22KM/h)、掘起力(48KW)
最大牽引力(40KW)、最大爬坡能力(30°)
最小轉(zhuǎn)彎半徑——后輪(4220mm)、鏟斗(4364mm)
最大轉(zhuǎn)向角度(35°)、最大卸載高度(2500mm)
論文開題報(bào)告(設(shè)計(jì)方案論證)
應(yīng)包括以下幾方面的內(nèi)容:
1. 本課題研究的目的和意義
輪式裝載機(jī)是一種用途較廣的工程機(jī)械,廣泛應(yīng)用于鐵路、公路、碼頭、礦山等工程建設(shè),對(duì)于加快工程施工速度,減輕勞動(dòng)強(qiáng)度都起到至關(guān)重要的作用。由于輪式裝載機(jī)經(jīng)常工作在各種復(fù)雜的工況下,這就要求輪式裝載機(jī)具有良好的適應(yīng)性和可靠性,尤其是工作裝置的各種設(shè)計(jì)參數(shù)直接影響裝載機(jī)的整機(jī)性能,因此對(duì)輪式裝載機(jī)的設(shè)計(jì)提出了嚴(yán)格的要求。因此,我們有必要研究它,輪式裝載機(jī)的設(shè)計(jì)能使我綜合運(yùn)用機(jī)械制造的基本理論,綜合使用了再大學(xué)四年里所學(xué)的理論知識(shí),并結(jié)合生產(chǎn)實(shí)踐中學(xué)到的技能知識(shí),獨(dú)立的分析和解決問題,也是熟悉和運(yùn)用有關(guān)手冊(cè),圖標(biāo)等技術(shù)資料及編寫技術(shù)文件的一次實(shí)踐機(jī)會(huì),并且希望可以提高裝載機(jī)作業(yè)效率,對(duì)輪式裝載機(jī)的發(fā)展起到一個(gè)推進(jìn)的作用。
2. 國內(nèi)外研究現(xiàn)狀
我國輪式裝載機(jī)主要是20世紀(jì)70年代初期發(fā)展起來的,以ZL50型裝載機(jī)為主導(dǎo)產(chǎn)品,經(jīng)過多年的發(fā)展,質(zhì)量水平不斷提高,已經(jīng)形成獨(dú)立的產(chǎn)品系列和行業(yè)門類。與工程機(jī)械其他機(jī)種相比,輪式裝載機(jī)的橋、箱、泵、閥及缸等零部件產(chǎn)品配套相對(duì)成熟,已經(jīng)形成了比較完整的配套體系。主要生產(chǎn)企業(yè)有柳工、廈工、龍工、臨工、徐工、江蘇常林、成工和山工等。主要機(jī)型包括:1、3t以下裝載機(jī):3t以下產(chǎn)品主要以ZL10、ZL15、ZL16為代表,還有一些利用拖拉機(jī)底盤改裝的小型裝載機(jī),主要與日益增多的農(nóng)用運(yùn)輸車輛配套使用。主要零部件均采用一般性能及質(zhì)量的發(fā)動(dòng)機(jī)、驅(qū)動(dòng)橋、變速箱、液壓件。技術(shù)較先進(jìn)的靜液壓傳動(dòng)產(chǎn)品,液壓件國內(nèi)不易配套,產(chǎn)品成本居高不下,制約了該類產(chǎn)品在國內(nèi)的發(fā)展。2、ZL30裝載機(jī):ZL30裝載機(jī)主要生產(chǎn)廠家有成工、常林、徐工、宜工、山工等。該產(chǎn)品零部件配置較零亂,生產(chǎn)廠家具有自制的橋箱,風(fēng)格各具特色,質(zhì)量及性能上相對(duì)穩(wěn)定,技術(shù)先進(jìn)性一般。徐工最近開發(fā)的ZL30F裝載機(jī),采用電換擋變速箱,使3t級(jí)裝載機(jī)技術(shù)上有新的突破。3、ZL40/ZL50裝載機(jī):ZL40/ZL50裝載機(jī),主要裝載機(jī)生產(chǎn)廠家均擁有該產(chǎn)品。第一代產(chǎn)品幾十年來沿續(xù)至今,全國幾乎使用同一套圖紙,有些技術(shù)力量薄弱的廠家,仍把其當(dāng)作主導(dǎo)產(chǎn)品推向市場(chǎng)。第二、三代產(chǎn)品主要是對(duì)工作裝置進(jìn)行優(yōu)化,改變外觀造型。如柳工ZL40B/ZL50C、徐工ZL40E/ZL50E。第四代產(chǎn)品是在第三代的基礎(chǔ)上,進(jìn)一步優(yōu)化整機(jī)的性能及配置,電控箱、濕式制動(dòng)器等新技術(shù)得到應(yīng)用,并形成了各企業(yè)的專有技術(shù)及專利技術(shù),使產(chǎn)品以嶄新的面目推向市場(chǎng)。4、ZL60及6t以上裝載機(jī):6t以及6t以上的裝載機(jī),這是國內(nèi)潛在市場(chǎng)最大的產(chǎn)品,1998年以前大多數(shù)生產(chǎn)廠家均開發(fā)了ZL60裝載機(jī),但由于受傳動(dòng)件的制約,ZL60裝載機(jī)沒能成功地推向市場(chǎng)。在’99北京國際工程機(jī)械博覽會(huì)上,各廠家推出了新的一代ZL60裝載機(jī),多數(shù)廠家選擇柳州ZF合資生產(chǎn)的箱或橋,液壓元件也有新配置,發(fā)動(dòng)機(jī)可選用斯太爾或上柴6121(Cat3306),整機(jī)可靠性上得到很大提高,給國內(nèi)大噸位裝載機(jī)帶來發(fā)展機(jī)遇。
我國輪式裝載機(jī)面對(duì)的主要國外對(duì)手有:美國卡特彼勒公司、日本小松公司緊隨其后,西歐是裝載機(jī)生產(chǎn)的第三大集團(tuán),它擁有意大利菲亞特、阿里斯、瑞典沃爾沃、德國利勃海爾、O&K、蔡特曼、英國JCB等著名公司。目前這些工程建設(shè)機(jī)械廠商現(xiàn)已全面進(jìn)入了中國市場(chǎng),主要對(duì)6噸級(jí)以上裝載機(jī)形成壟斷地位,在中小噸位裝載機(jī)對(duì)國內(nèi)不會(huì)造成很大威脅,但國外廠商正在研究中國市場(chǎng)的特點(diǎn),開發(fā)出適合中國國情的新產(chǎn)品,進(jìn)一步擴(kuò)大其產(chǎn)品的市場(chǎng)占有率。他們的輪式裝載機(jī)技術(shù)已達(dá)到相當(dāng)高的水平。信息技術(shù)的飛速發(fā)展又給裝載機(jī)技術(shù)的發(fā)展插上了奔騰的翅膀,基于微電子技術(shù)和信息技術(shù)的計(jì)算機(jī)治理系統(tǒng)、司機(jī)輔助操縱系統(tǒng)、柴油機(jī)電腦控制裝置、電子計(jì)算機(jī)監(jiān)控系統(tǒng)、電子自動(dòng)換擋變速控制系統(tǒng)以及網(wǎng)絡(luò)技術(shù)的智能系統(tǒng)已廣泛應(yīng)用于裝載機(jī)的設(shè)計(jì)、計(jì)算操縱控制、檢測(cè)監(jiān)控、生產(chǎn)經(jīng)營和維修服務(wù)等各個(gè)方面,使國外裝載機(jī)在原來的基礎(chǔ)上更加“精制”;其自動(dòng)化程度也得以進(jìn)步,從而進(jìn)一步進(jìn)步了生產(chǎn)效率;改善了司機(jī)的作業(yè)環(huán)境,進(jìn)步了作業(yè)舒適性;降低了噪聲、振動(dòng)和排污量,保護(hù)自然環(huán)境;最大限度地簡(jiǎn)化維修、降低作以本錢,使其性能、安全性、可靠性、使用壽命和操縱性能都更上了一層樓。
3.擬采取的研究路線
收集資料,調(diào)研——閱讀有關(guān)資料——撰寫開題報(bào)告——總體設(shè)計(jì)———工作裝置結(jié)構(gòu)設(shè)計(jì)———設(shè)計(jì)、計(jì)算、校核——繪圖——設(shè)計(jì)說明書
4.參考文獻(xiàn):
[1] 楊占敏.輪式裝載機(jī)設(shè)計(jì)[M].北京:化學(xué)工業(yè)出版社,1982.
[2] 于碩.裝載機(jī)工作裝置的機(jī)構(gòu)分析[J]. 工程機(jī)械,2001(8):25-27
[3] 申文清.輪式裝載機(jī)工作裝置的建模及優(yōu)化研究[J]. 筑路機(jī)械與施工機(jī)械化, 2006(4):43-45
[4] 張青.工程機(jī)械概論[M].北京:化學(xué)工業(yè)出版社,2009.
[5] 何正忠.裝載機(jī)[M].北京:冶金工業(yè)出版社,1999.
[6] 魯東林.工程機(jī)械使用與維護(hù)[M].北京:國防工業(yè)出版社,2008.
[7] 劉良辰.現(xiàn)代鏟土運(yùn)輸機(jī)械[M].北京:人民交通出版社,2003
[8] 馬文星.筑路與養(yǎng)護(hù)路機(jī)械:原理、結(jié)構(gòu)與設(shè)計(jì)[M].北京:化學(xué)工業(yè)出版社,2005
[9] 陳家麗.國外輪式裝載機(jī)新技術(shù)與新結(jié)構(gòu)及其發(fā)展[J].建筑機(jī)械化,2002(1):17-19
[10] 黃靖遠(yuǎn).機(jī)械設(shè)計(jì)學(xué)[M].北京:機(jī)械工業(yè)出版社,1991.
[11] 朱龍根.機(jī)械系統(tǒng)設(shè)計(jì)[M].北京:機(jī)械工業(yè)出版社,1980.
[12] 加藤一郎.機(jī)械手圖冊(cè)[M].上海:上海科技出版社,1979.
[13] 機(jī)械設(shè)計(jì)手冊(cè)5[M] 北京:機(jī)械工業(yè)出版社,1992.
[14]Shimoda,Masatoshi.Multiob jrctive shape optimization of linearelastic structures considering multipe loading conditions[J],material engineering,v39,n3.jul1996:407-414
[15] Hyde J M ., Cutkosky M .R.Controlling contact transition.
IEEE Contro1 Systems[J],1994,14(1):25-30
[16] Ii Z.X.,Qin Z.,Jiang S.et a1.Coordinated motion generation
and real-time grasping force control for multi-fingered manipulation. Proceedings of the IEEE Internationa1 Conference on Robotics and Automation[M],1998,3631-3638
系統(tǒng)辨識(shí)與實(shí)時(shí)控制斗輪式裝載機(jī)的液壓系統(tǒng)土方設(shè)備
摘要
土方設(shè)備行業(yè)的迅速整裝待發(fā),準(zhǔn)備在近期實(shí)現(xiàn)數(shù)字化控制技術(shù)在其產(chǎn)品的快速部署的效率,性能,安全性和操作舒適巨大收益。世界上主要有兩種類型的移動(dòng)設(shè)備操作的最多:挖掘機(jī)和輪式裝載機(jī)?,F(xiàn)在挖掘機(jī)已受到業(yè)界的關(guān)注。輪式裝載機(jī)產(chǎn)品在本文研究的是另一種高容量多功能機(jī)在配置頻譜的另一端的例子。一個(gè)先進(jìn)的電液開放中心的非壓力補(bǔ)償閥控制系統(tǒng)的狀態(tài)進(jìn)行了研究,以評(píng)估通過實(shí)施數(shù)字化速度伺服控制的潛在收益??刂颇繕?biāo)是滿足運(yùn)營商自覺響應(yīng)要求,滿足運(yùn)營商認(rèn)為光滑度要求,創(chuàng)建一個(gè)子系統(tǒng),可以接受命令弗勒曼自治區(qū)高層次的規(guī)劃控制。
數(shù)字化速度的閉環(huán)控制是成功實(shí)施的一個(gè)貨架輪式裝載機(jī)采用標(biāo)準(zhǔn)比例積分(PI)和閥的動(dòng)態(tài)變換算法的議案。動(dòng)態(tài)轉(zhuǎn)換閥是液壓流量功能,是一種發(fā)動(dòng)機(jī)轉(zhuǎn)速和氣缸壓力桿端功能。魯棒性的性能進(jìn)行了驗(yàn)證,通過廣泛的系統(tǒng)建模,驗(yàn)證,并在大卡特彼勒輪式裝載機(jī)型號(hào)的硬件測(cè)試。
簡(jiǎn)介
汽車行業(yè)已經(jīng)在效率,性能,安全性巨大收益和乘客由最近在其產(chǎn)品的數(shù)字化控制技術(shù)的廣泛和快速部署的舒適度。地球發(fā)展的行業(yè)正在迅速整裝待發(fā),準(zhǔn)備在短期內(nèi)實(shí)現(xiàn)類似的收益。主要有兩種類型的推土設(shè)備:挖掘機(jī)和輪式裝載機(jī)。長遠(yuǎn)目標(biāo)是建立一個(gè)獨(dú)立的產(chǎn)品,不再操作技巧和耐力依靠最大限度地提高性能。衡量其性能的噸/小時(shí),該材料的處理最小化的運(yùn)作在成本/噸的形式加工材料成本的形式。我們的目標(biāo)是開發(fā)控制子系統(tǒng),改善經(jīng)營人/機(jī)的性能,降低運(yùn)營成本,這將作為較低級(jí)別控制子在自治區(qū)控制器的等級(jí)制度。
輪式裝載機(jī)(WTL中)有許多大小。工作重量范圍從15000-350000和馬力馬力范圍從100-1200。小到中型機(jī)器的應(yīng)用程序(例如,施工和材料處理應(yīng)用)最廣泛而較大的機(jī)器往往是用于礦山的應(yīng)用為主。 WTL的一個(gè)常見的功能是利用卡車裝載??ㄜ囇b載周期是一個(gè)重復(fù)的四個(gè)步驟,其中一些類型的材料是從股票樁運(yùn)到卡車上。這個(gè)過程開始時(shí),運(yùn)營商的股票樁公羊和命令的聯(lián)系,以提升負(fù)載,而在同一時(shí)間向后搖桶(步驟1:旅行,股票樁和挖)。當(dāng)水桶已滿載,逆向操作的變化和旅行轉(zhuǎn)向時(shí)向后一個(gè)位置,使他有足夠的空間,然后轉(zhuǎn)移到前進(jìn),前往卡車。經(jīng)營者繼續(xù)這次旅行期間提出的部分,以便它清除車床上時(shí),他減慢,達(dá)到卡車(步驟2:前往卡車)負(fù)載。運(yùn)轉(zhuǎn)員接著命令桶傾倒從而釋放負(fù)載到卡車床(步驟3:轉(zhuǎn)儲(chǔ))。最后,操作命令把水桶架回其水平位置。同時(shí),旅游經(jīng)營者進(jìn)入反向變化和命令的聯(lián)系,以降低再挖周期(步驟4:行程開始位置)返回地面。
本研究的重點(diǎn)是數(shù)字化速度的閉環(huán)控制的執(zhí)行情況在執(zhí)行子一個(gè)先進(jìn)的輪式裝載機(jī)移動(dòng)設(shè)備的接地電流狀態(tài)系統(tǒng)。這項(xiàng)技術(shù)的應(yīng)用不僅限于WTL以及實(shí)際上已經(jīng)到了地球的各種移動(dòng)設(shè)備的廣泛應(yīng)用。挖掘機(jī)
液壓子系統(tǒng)的控制問題已引起廣泛關(guān)注最近有液壓子在一般系統(tǒng)。
描述輪式裝載機(jī)的子系統(tǒng)
土方設(shè)備可細(xì)分為4個(gè)子系統(tǒng)。(1)動(dòng)力裝置,(2)制動(dòng)系統(tǒng),(三)工作裝置,(4)液壓傳動(dòng)器。上電列車由一個(gè)電源,通常是一個(gè)柴油發(fā)動(dòng)機(jī)。電力傳輸?shù)揭环N通過液力變矩器然后連接到差距機(jī)械傳動(dòng),驅(qū)動(dòng)器和最后輪胎。這通常是對(duì)WTL案件。挖掘機(jī)有水文靜態(tài)驅(qū)動(dòng)列車(即,液壓泵和馬達(dá))連接到一個(gè)軌道。幾個(gè)發(fā)動(dòng)機(jī)功率起飛通過泵提供動(dòng)力轉(zhuǎn)向液壓系統(tǒng)運(yùn)行,制動(dòng)系統(tǒng)是典型的液壓\和液壓執(zhí)行系統(tǒng)。該液壓驅(qū)動(dòng)系統(tǒng)包含地面從事工具,提供了力量和運(yùn)動(dòng),從事土壤或其他材料需要處理。
2.1.自由車度
出租車經(jīng)營者被認(rèn)為有六個(gè)自由度:三線性(前,后部,橫向,縱向)和三個(gè)角(偏航,俯仰,roll0。鏟斗有兩個(gè)自由度。督導(dǎo)是一種額外的自由程度。因此,車輛有著9年的自由程度。為了簡(jiǎn)化即將舉行的分析,兩
限制將在系統(tǒng)規(guī)定。首先,前幀運(yùn)動(dòng)不會(huì)允許旋轉(zhuǎn)相對(duì)于后車架。第二,后車架議案將限制在一個(gè)平面上。第一個(gè)約束消除了單自由度(轉(zhuǎn)向)學(xué)位從分析中。第二個(gè)約束消除了三自由度:運(yùn)營商橫向直線運(yùn)動(dòng),偏航角和滾動(dòng)角運(yùn)動(dòng)的議案。因此,我們認(rèn)為只有五個(gè)自由度在我們的模型:電梯和傾斜落實(shí)桶議案和操作前,尾部和垂直直線運(yùn)動(dòng)和俯仰角的議案。
2.2. 連鎖
有幾種類型的WTL的實(shí)現(xiàn)使用目前的聯(lián)系。一個(gè)非常普遍的例如,所謂的Z型連桿。它是自由的兩個(gè)學(xué)位四體聯(lián)動(dòng)(提升臂,杠桿,鏈接,桶)和兩個(gè)組成的非對(duì)稱液壓缸(升降機(jī)及傾斜),由九個(gè)旋轉(zhuǎn)腳關(guān)節(jié)連在一起。
2.3. 主要液壓系統(tǒng)
一個(gè)普通液壓系統(tǒng)通常用來實(shí)現(xiàn)控制流量的電梯WTL的傾斜和一缸采用開放中心非壓力補(bǔ)償閥芯型閥。這個(gè)系統(tǒng)包含一個(gè)水泵/釋壓閥的流體傳送到主
換向閥從而分區(qū)到液壓缸和坦克流。
組件和它們的運(yùn)作是最好的形容按照液壓流體通過各種運(yùn)行條件下的電路。最簡(jiǎn)單的條件是在沒有命令從流腦放大器電流。該電梯線軸和傾斜,因?yàn)閷⒓性贓/小時(shí)閥電磁鐵將不會(huì)被激活。在這種情況下,通過發(fā)送泵單向閥的負(fù)載流量(最大操作設(shè)置壓力)的傾斜閥芯。由于這閥芯為中心,流動(dòng)收益上的電梯閥芯,這也是為中心,返回循環(huán)水箱。命名為“開放中心“的事實(shí),即當(dāng)閥門在中立的立場(chǎng)來,流體循環(huán)從通過到罐的閥門泵。
如果傾斜閥芯中心\及電梯閥芯右移,一開口就罐區(qū)稱為泵罐區(qū)(星期三)而受到限制。泵的壓力建立起來,克服了負(fù)載止回閥發(fā)送流向頭端(HE)的對(duì)在另一口的升降油缸稱為至氣缸區(qū)(PC)的泵。在同時(shí),流體從桿端(重新)電梯在另一口缸流量所謂的氣缸罐區(qū)(CT)和再循環(huán),再進(jìn)行坦克。因此,
電梯活塞桿延伸提高一個(gè)可能在桶中的負(fù)載。如果電梯閥芯左移相反的情況。從他流體流經(jīng)對(duì)坦克的CT,從泵流體流動(dòng)以及整個(gè)閥芯如果沒有足夠的轉(zhuǎn)移完全關(guān)閉的PT太平洋橫跨可再生能源的電腦。因此,電梯活塞桿縮回桶降低到地面。如果電梯閥芯居中和傾斜閥芯被激活時(shí),傾斜油缸的行為類似于電梯缸。
在WTL車輛,電梯管道與閥芯系列傾斜。此配置被稱為傾斜優(yōu)先事項(xiàng),因?yàn)殡娐返膬A斜流量需求可以通過預(yù)約和關(guān)閉電梯電路。此外,氣缸安全閥可能被添加到每個(gè)RE和他如果每個(gè)部分各不相同的最高工作壓力的主要救濟(jì)
結(jié)構(gòu)壽命或安全的關(guān)注?;瘖y閥往添加到這些系統(tǒng)很好。這些止回閥提供缸罐流向稀土在事件或作真空操作過程中創(chuàng)建。這樣,空化可以顯著減少。這是如電梯武裝以重力驅(qū)動(dòng)的功能降低或問題桶中的CT傾倒區(qū)已設(shè)計(jì)提供限制產(chǎn)量快速缸速度。在這種情況下,泵的流量與氣缸無法比擬從氣缸流向低壓槽和空化創(chuàng)造。這是非常以來的液壓系統(tǒng)可控的閉環(huán)控制是不可取空蝕過程中有效地失去了。
2.4. 電液壓先導(dǎo)
一個(gè)先導(dǎo)泵供應(yīng)流到壓力調(diào)節(jié)閥,它維護(hù)一個(gè)穩(wěn)定供應(yīng)的壓力,一個(gè)E/小時(shí)閥這也是連接到油箱。細(xì)胞外基質(zhì)中的驅(qū)動(dòng)程序發(fā)送到電磁鐵電流其中移動(dòng)一個(gè)控制閥芯。由于這閥芯移動(dòng),一米的連接口供應(yīng)壓力端口和一個(gè)節(jié)流孔連接到油箱比例開放保持或接近控制壓力。這種壓力作用在主閥芯造成它移位,打開主孔區(qū)(即,電腦斷層,鉑,電腦)。在某些情況下,位置主閥芯是用來提供反饋閉環(huán)位置控制閥芯。
2.5.?dāng)?shù)字化控制系統(tǒng)
基本低成本的組件將被選為這項(xiàng)研究將與一致目前的做法在這個(gè)行業(yè)。通常情況下,7位微處理器,其中使用大會(huì)編碼須達(dá)到20毫秒循環(huán)時(shí)間。旋轉(zhuǎn)式電位器用于傳感器反饋以及參考輸入信號(hào)。
3) 動(dòng)態(tài)模式:平面傾斜和車輛動(dòng)態(tài)電路
傾斜的動(dòng)態(tài)電路模型,從投入產(chǎn)出關(guān)系點(diǎn)的觀點(diǎn)。輸入是傾斜電路閥芯的位置。的輸出是:(1)由于角速度斗缸位移傾斜,(2)平面運(yùn)動(dòng)(X,?,θ)的車輛。
下面的假設(shè)和近似作出的模型:
(1)電梯電路以象征式升降機(jī)固定角度。因此,我們期望獲得不同面值不同傾斜位置電梯電路電路模型。
(2)車輛被建模為一個(gè)在二維空間質(zhì)量彈簧阻尼器系統(tǒng),有三個(gè)自由度:的x,y,美國這是一個(gè)相當(dāng)不錯(cuò)的,因?yàn)檐嚿肀平洼喬ハ褚粋€(gè)大眾彈簧阻尼系統(tǒng)。(3)軟管量和水力損失包括在水力模型。
(4)電液閥是一個(gè)二階濾波器,包括動(dòng)態(tài)0.707阻尼比。這是符合實(shí)際的英/ H閥使用行為是一致的在WTL車輛。
(5)電子/小時(shí)閥芯區(qū)(稱為計(jì)量)不是閥芯位置的線性函數(shù)。閥芯面積幾何精確建模為非線性函數(shù)的閥芯位置。
(6)標(biāo)準(zhǔn)孔板方程來描述流程之間的關(guān)系率(Q)和閥芯位置(因此測(cè)光區(qū)域),壓差時(shí),ΔP。
(7)靈活性,由于石油是考慮到壓縮為體積模量液壓油。閥芯位置之間的水桶和角速度的輸入輸出關(guān)系
獲得三個(gè)逼近階段:
(1)穩(wěn)態(tài)之間的閥芯位移和傾斜缸輸入輸出功能傾斜速度被稱為調(diào)制。該模型的非線性靜態(tài)捕捉死區(qū)的幾何關(guān)系,包括與閥門缸增益。請(qǐng)注意有效的死區(qū)和增益是(1)流量的功能(這是一個(gè)功能發(fā)動(dòng)機(jī)轉(zhuǎn)速在WTL的情況),和(2)外部負(fù)載。換句話說,直流增益?zhèn)鬟f函數(shù)是一個(gè)流量,外部負(fù)載的非線性函數(shù),名義電梯電路的位置。
(2)線速度之間的傾斜缸和鏟斗幾何線性關(guān)系速度是描述聯(lián)動(dòng)雅可比。這是表示為一系列針對(duì)不同的電梯位置曲線(插表作為實(shí)時(shí)實(shí)現(xiàn)的)。
(3)最后,我們從后臺(tái)處理模型的液壓電路的動(dòng)態(tài)過濾效果位置傾斜缸速度。穩(wěn)態(tài)增益在獲取信息的調(diào)制和傾斜傾斜運(yùn)動(dòng)學(xué)模型。因此,在特區(qū)動(dòng)態(tài)模型的傾斜收益將約為團(tuán)結(jié)(0分貝)。此外,這將是電梯的位置和外部負(fù)載的函數(shù)。因此,所有三個(gè)模型塊組件方面的評(píng)估,預(yù)計(jì)全掃一電梯的位置和負(fù)載值。é/小時(shí)閥是一個(gè)開放的中心型閥。由于閥芯命令轉(zhuǎn)變的閥芯,鉑(泵罐)區(qū)開始關(guān)閉,電腦(泵缸)面積開始打開一樣的C- T的(缸罐)區(qū)。泵的壓力開始建立自的P- T是限制其流動(dòng)油箱。當(dāng)泵的壓力超過了何氣缸壓力,負(fù)載單向閥泵的流量持久性有機(jī)污染物允許進(jìn)入氣缸他說。這種流動(dòng)延伸圓柱的部隊(duì)從各地稀土流缸在C - T區(qū)油箱。由于外部負(fù)載變化時(shí),閥芯的最低金額需要匹配通過泵壓變化,以及不同加載命令。這結(jié)果有效的死區(qū)和增益變化。如果外部負(fù)載相反(即超過運(yùn)行負(fù)荷狀態(tài)),延長了氣缸率將主要取決于除兩端的壓降壓降的CT區(qū)的CT是這樣的:流量比泵進(jìn)入氣缸的何流更少。接著率將延長泵驅(qū)動(dòng)。
(4)閉環(huán)控制系統(tǒng)的性能目標(biāo)
液壓系統(tǒng)元件(泵,油缸,伺服閥)的大小,以便它們能提供必要的功率級(jí)(流量和壓力)為移動(dòng)的WTL是設(shè)計(jì)用來處理負(fù)載范圍內(nèi)桶。在這里,我們將不再重復(fù)液壓控制系統(tǒng)元件尺寸分析,但是,我只想說這它們大小,以滿足下列議案的電源要求:電梯電路在全面提高10秒,電梯的電路全部在3.5降低,傾斜在4.0的電路全機(jī)架,傾斜電路充分潮濕條件下,最大負(fù)荷2.5秒。最大負(fù)載能力是斗1.2錳。
(5)結(jié)果:仿真和實(shí)驗(yàn)
該實(shí)驗(yàn)?zāi)P蜕线M(jìn)行了卡特彼勒WTL的889種類的車輛。為傾斜電路的控制算法實(shí)現(xiàn)用微型控制器,對(duì)船上的8位分辨率的A / D,D / A轉(zhuǎn)換。有效的死區(qū)是負(fù)載和發(fā)動(dòng)機(jī)轉(zhuǎn)速的功能。在實(shí)時(shí)實(shí)現(xiàn)不同低估死區(qū)值使用,以避免過沖。不準(zhǔn)確的死區(qū)補(bǔ)償?shù)捻憫?yīng)是在Fig.14.It顯示延時(shí)效果觀察到,在響應(yīng)時(shí)間減少到低于0.2的時(shí)候賠償范圍內(nèi),其實(shí)際有效價(jià)值1.0毫米的。圖15顯示了上升時(shí)間敏感閥改造的收益。據(jù)觀察,為了滿足時(shí)間要求提高0.5秒的增益必須相當(dāng)準(zhǔn)確。圖16shows一兩個(gè)實(shí)驗(yàn)和分析比較下一個(gè)完整的電梯,完全轉(zhuǎn)儲(chǔ),無負(fù)荷,高怠速架步反應(yīng)的條件。造成這種狀況的性能標(biāo)準(zhǔn)的0.5秒和5%上升時(shí)間小于0.2秒的延遲就形成一個(gè)關(guān)心過沖閥變換的動(dòng)態(tài)執(zhí)行中遇到的壓力是再反饋級(jí)過濾反應(yīng)所需的穩(wěn)定。據(jù)推測(cè),壓力應(yīng)低通濾波在或低于閉環(huán)系統(tǒng)帶寬,以一個(gè)臨界值。在這樣的閉環(huán)控制能夠響應(yīng)增益的變化,就好像他們是死區(qū)對(duì)系統(tǒng)干擾。實(shí)驗(yàn)和分析都反映了這種過濾。雖然沒有顯示,在穩(wěn)定性上WTL的模型進(jìn)行的實(shí)驗(yàn)都保持990.Therefore,這樣一種高血壓控制用PI型制度的有效控制閉環(huán)控制加閥變換模型為基礎(chǔ)的補(bǔ)償要求非常精確的模型。
(6) 總結(jié)
一個(gè)先進(jìn)的電液開放為中心的非壓力補(bǔ)償?shù)膶?shí)現(xiàn)系統(tǒng)狀態(tài)進(jìn)行了研究,以評(píng)估執(zhí)行速度伺服控制,同時(shí)滿足運(yùn)營商的響應(yīng)和平滑性能規(guī)格的潛力,并建立一個(gè)模塊化的子系統(tǒng),將接受從命令自治區(qū)高層次上的WTL的車輛規(guī)劃控制器。閉環(huán)速度控制成功地實(shí)施了傾斜電路貨架使用標(biāo)準(zhǔn)的比例積分控制器,具有動(dòng)態(tài)轉(zhuǎn)換閥偶函數(shù)。閥的動(dòng)態(tài)變換是發(fā)動(dòng)機(jī)轉(zhuǎn)速(液壓流量)和桿端氣缸壓力的作用。閥門共享的動(dòng)態(tài)變換在實(shí)時(shí)控制算法提供的自由化效果類似壓力補(bǔ)償?shù)呢?fù)荷傳感液壓系統(tǒng)和元件成本降低的結(jié)果。強(qiáng)大的性能進(jìn)行了驗(yàn)證,通過廣泛的系統(tǒng)建模與一個(gè) WTL model990車試驗(yàn)。
Modeling identification and real time control of bucket hydraulic system for a wheel type loader earth moving equipment
Abstract
The earth moving equipment industry is quickly gearing up to achieve great gains in efficiency, performance, safety, and operator comfort by the rapid deployment of recent digital control technology in its products.There are two major types of earth moving equipment operating in large numbers: excavators and wheel type loaders. Excavators have received much attention by the industry recently. The wheel type loader product studied in this paper is another example of a high volume versatile machine at the opposite end of the configuration spectrum.A state of the art electro-hydraulic open centered non-pressure compensated valve control system is studied to evaluate the potential gains by implementing digital velocity servo control. The control objectives are to meet operator perceived response requirements, meet operator perceived smoothness requirements, create a sub-system that could accept commands froman autonomous high level planning controller.
Closed loop digital velocity control is successfully implemented in the racking motion of a wheel loader using a standard proportional-integral (PI) and a dynamic valve transform algorithm. The dynamic valve transform is a function of hydraulic flow rate which is a function of engine speed and rod end cylinder pressure. Robustness of performance was verified through extensive system modeling, validation, and hardware tests on a large Caterpillar wheel loader model.
Introduction
The automotive industry has made great gains in efficiency, performance, safety
and passenger comfort by the extensive and rapid deployment of the recent digital control technologies in its products. The earth moving industry is quickly gearing up to achieve similar gains in the short term. There are two major types of earth moving equipment: excavators and wheel type loader . The long term goal is to develop an autonomous product that no longer relies on the operator skill and endurance to maximize performance. The performance is measured in the form of tons/h of the material processed and minimizing the cost of the operation in the form of cost/ton of material processed. The goal is to develop controlled sub-systems that improve operator/machine performance, reduce operation cost, and that would serve as lower level control sub-system in the autonomous controller hierarchy.
Wheel type loaders (WTL) come in many sizes. Operating weight ranges from 15000-350000ib and horsepower ranges from 100-1200 hp. The small to mid-size machines have the broadest spectrum of applications (e.g., construction and material handling applications) while the larger machines tend to be used mostly in mining applications. One common function WTL are utilized for is truck loading.
The truck loading cycle is a repetitive four step process by which some type of material is transported from a stock pile to a truck. The process starts when the operator rams the stock pile and commands the linkage to lift load while at the same time the bucket is racked backwards (step 1: travel, to stock pile and dig).When the bucket has a full load, the operator shifts into reverse and travels backwards while steering to a position that allows him enough room to then shift into forward and travel to the truck. The operator continues to raise the load during this travel portion so that it clears the truck bed when he slows down and reaches the truck (step 2: travel to truck). The operator then commands the bucket to dump thus releasing the load to the truck bed (step 3: dump). Finally, the operator commands the bucket to rack back to its level position. At the same time, the operator shifts into reverse travel and commands the linkage to lower back to the ground for another dig cycle (step 4:travel to start position). This study focuses on the implementation of closed loop digital velocity control on the implement sub-system of a current state of the art wheel type loader earth moving equipment. The application of this technology is not limited to WTL and in fact has broad applications to a variety of earth moving equipment .The excavator hydraulic sub-system control problem has received much attention recently as have hydraulic sub-systems in general.
Description of the wheel type loader sub-system
Earth moving equipment can be broken down into four sub-systems. (1) power-train,(2) brakes,(3) steering, and (4) hydraulic actuators. The power-train consists of a power source which is typically a diesel engine. Power is transmitted to a mechanical transmission via a torque converter which then connects to differentials, drives and finally tires. This is typically the case for WTL. Excavators have a hydro-static drive train (i.e., hydraulic pumps and motors) that connects to a track. Several engine power take-offs provide power via pumps to run the steering hydraulic system, the brake system which is typically hydraulic,and the hydraulic actuator system. The hydraulic actuation system contains the ground engaging tool that provides the force and motion to engage the soil or other material that needs to be processed.
2.1. Vehicle degrees of freedom
The operator cab is considered to have six degrees of freedom: three linear (fore-aft, lateral, vertical) and three angular (yaw, pitch, roll). The bucket has two degrees of freedom. Steering is one additional degree of freedom. Therefore, the vehicle has nine degrees of freedom. To simplify the upcoming analysis, two constrains will be imposed on the system. First, the front frame motion will not be allowed to rotate relative to the rear frame. Second, the rear frame motion will be constrained to a plane. The First constraint eliminates one degree of freedom (steering) from the analysis. The second constraint eliminates three degrees of freedom: operator lateral linear motion, yaw angular motion and roll angular motion. Thus, we consider only five degrees of freedom in our model: lift and tilt implement motion of the bucket and operator fore-aft and vertical linear motion and pitch angular motion.
2.2. Linkage
There are several types of WTL implement linkages currently in use. A very common example, called the Z-bar linkage. It is a two degrees of freedom linkage consisting of four bodies (lift arm, lever, link, bucket) and two asymmetric hydraulic cylinders (lift and tilt), all connected together by nine revolute pin joints.
2.3. Main hydraulics
A common hydraulic implement system often used to control the flow to the lift and tilt cylinders of a WTL uses the open center non-pressure compensated spool type valve. This system contains a pump/relief valve which sends fluid to a main directional valve which in turn partitions the flow to hydraulic cylinders and tank.
The components and their operation are best described by following the hydraulic fluid through the circuit under various operating conditions. The simplest condition is when there is no command current from the ECM amplifiers. The lift and tilt spools will be centered since the E/H valve solenoids will not be activated. In this case, the pump sends flow across a load check valve (set at maximum operating pressure) to the tilt spool. Since this spool is centered, the flow proceeds on to the lift spool, which is also centered, and back to tank for recirculation. The name "open center" comes from the fact that when valve is in neutral position, fluid circulates from the pump through the valve to the tank.
If the tilt spool is centered\ and the lift spool is shifted to the right, an orifice to tank area called the pump to tank area (P-T) becomes restricted. The pump pressure builds up and overcomes the load check valve sending flow to the head end (HE) of the lift cylinder across another orifice called the pump to cylinder area (P-C). At the same time, fluid from the rod end (RE) of the lift cylinder flows across another orifice called the cylinder to tank area (C-T) and on to tank for recirculation. As a result, the lift cylinder rod extends raising a load that may be contained in the bucket. If the lift spool is shifted to the left the opposite happens. Fluid from the HE flows across the C-T to tank, fluid from the pump flows across the P-C to the RE as well as across the P-T if the spool is not shifted enough to completely close the P-T. As a result, the lift cylinder rod retracts lowering the bucket to the ground. If the lift spool is centered and the tilt spool is activated, the tilt cylinder will behave similar to the lift cylinder.
In WTL vehicles, the lift spool is piped in series with the tilt spool. This configuration is called tilt priority, since the flow requirement of tilt circuit can over-ride and shut off the lift circuit. Additionally, cylinder relief valves may be added to each RE and HE if the maximum operating pressures for each section varies from main relief for structural life or safety concerns. Make-up valves are often added to these systems as well. These check valves provide tank flow to the cylinder RE or HE in the event that a vacuum is created during operation. In this way, cavitation can be significantly reduced. This is a problem for gravity driven functions such as lift arm lower or bucket dump in which the C-T area has been designed to provide restrictions that yield fast cylinder velocities. In this case, the pump flow to the cylinder can not match the flow from cylinder to tank creating low pressures and cavitation. This is highly undesirable in closed loop control since controllability of the hydraulic system is effectively lost during cavitation.
2.4. Electro Hydraulic pilot valve
A pilot pump supplies flow to a pressure regulation valve that maintains a constant supply pressure to an E/H valve which is also connected to tank. A driver in the ECM sends a current to the solenoid which moves a control spool. As this spool moves, a meter-in orifice connected to the supply pressure port and a meter-out orifice connected to tank proportionally open or close to maintain a control pressure. This pressure acts on the main spool causingit to shift and open the main orifice area (i.e., C-T, P-T, P-C). In some cases, position feedback of the main spool is used to provide closed loop position control of the spool.
2.5. Digital control system
Basic low cost components will be chosen for this study to be consistent with the current practice in this industry. Typically, 7-bit microprocessors are used in which assembly coding is required to achieve loop times of 20 ms. Rotary potentiometers are used for sensor feedback as well as reference input signals.
Dynamic model: tilt circuit and vehicle planar dynamics
Dynamic model of the tilt circuit is developed from an input-output relations point of view. The input is the spool position of the tilt circuit valve. The outputs are (1)bucket angular velocity due to tilt cylinder displacement, and (2) planar motion (x, y, θ)of the vehicle.
The following assumptions and approximations are made for the model:
(1) Lift circuit is stationary at a nominal lift angle. Therefore, we expect to obtain different tilt circuit models for different nominal lift circuit positions.
(2) Vehicle is modeled as a mass-spring-damper system in 2-D space which has three degrees of freedom: x, y, u. This is a fairly good approximation since vehicle body and tires act like a mass-spring-damper system.
(3) Hose volume and hydraulic losses are included in the hydraulic model.
(4) Electro-hydraulic valve dynamics is included as a second order filter with 0.707 damping ratio. This is consistent with the behavior of the actual E/H valves used in WTL vehicles.
(5) E/H valve spool areas (called metering) are not linear functions of spool positions.
The spool area geometry is accurately modeled as a nonlinear function of spool position.
(6) Standard orifice equations are used to describe the relationship between the flow rate (Q) and the spool position (hence the metering area), and pressure differential, Δ p
(7) Flexibility due to the oil compressibility is taken into account as bulk modulus of the hydraulic fluid.
The input-output relationship between spool position and bucket angular velocity is obtained in three stages of approximation:
(1) Steady state input-output function between spool displacement and tilt cylinder velocity is called the tilt modulation. This model captures the nonlinear static relation including the geometric dead band and valve-cylinder gain. Notice that effective deadband and gain are functions of (1) flow rate (which is a function of engine speed in WTL case), and (2) external load. In other words, the DC gain of the transfer function is a nonlinear function of the flow rate, external load, and nominal lift circuit position.
(2) The geometric relation between tilt cylinder linear velocity and bucket linear velocity is described by the linkage jacobian. This is represented as a series of curves (implemented in real time as interpolated table) for different lift positions.
(3) Finally, we model the dynamic filtering effect of the hydraulic circuit from spool position to tilt cylinder velocity .The steady state gain information is captured in tilt modulation and tilt kinematic models. Therefore the d.c. gain of the tilt dynamic model will be approximately unity (0 dB). Furthermore, it will be function of lift position and external load. Therefore, all three block components of the model are evaluated for a full sweep of expected lift position and load values. E/H valve is an open-center type valve. As the spool command shifts the spool, the P-T (pump to tank) area starts to close, the P-C (pump to cylinder) area starts to open as does the C-T (cylinder to tank) area. The pump pressure starts to build up since the P-T is restricting its flow to tank. When the pump pressure exceeds the HE cylinder pressure, the load check valve pops allowing pump flow to enter the cylinder HE. This flow extends the cylinder which forces flow from the RE of cylinder across the C-T area to tank. As the external load varies, the minimum amount of spool command required to match the load via varying pump pressure varies as well. This results in effective deadband and gain changes. If the external load is reversed (i.e., over running load condition), the rate of cylinder extension will be primarily determined by the pressure drop across the C-T area unless the pressure drop is such that the C-T flow is less than the pump flow entering the HE of the cylinder. Then the rate of extension will be pump driven.
(4) Closed loop control system performance objectives
The hydraulic system components (pumps, cylinders, servo valves) were sized so that they can provide the necessary power levels (flow rate and pressure) to move the bucket for the range of loads the WTL is designed to handle. Here we will not repeat the hydraulic control system component sizing analysis, however, suffice it to say that they were sized to meet the power requirements for the following motions: lift circuit full raise in 10 s, lift circuit full lowering in 3.5 s, tilt circuit full rack in 4.0 s, tilt circuit full damp in 2.5s under maximum load condition. Maximum bucket load capacity is 1.2 MN.
(5)Results: simulations and experiments
The experiments were conducted on a Caterpillar model WTL 889 class vehicle. The control algorithm for the tilt circuit was implemented using a micro-controller which has 8-bit resolution A/D, D/A converters on board. Effective deadband is a function of load and engine speed. In real-time implementation different under-estimated deadband values were used in order to avoid overshoots. The effect of inaccurate deadband compensation on the delay of the response is shown in Fig.14.It is observed that the delay in response reduces to below 0.2 s when deadban compensation is within 1.0mm of its actual effective value. Figure 15 shows the rise time sensitivity to valve transform gains. It is observed that in order to meet the 0.5 s raise time requirement the gain must be fairly accurate. Figure 16shows a comparison step response for both experiment and analysis under the conditions of a full lift, full dump, no load, high idle rack. The performance criteria for this situation are met in the form of 0.5s rise time and 5%overshoot with less than 0.2s delay A concern regarding implementation of the dynamic valve transform is the level of RE pressure feedback filtering required for stable response. It was postulated that the pressure should be low pass filtered to a cutoff value at or below the bandwidth of the closed loop system. In this way the closed loop control could respond to the changes in gain and deadband as if they were disturbances on the system. Both experiment and analysis reflect this filtering. Though not shown, stability was maintained during all of the experiments conducted on WTL model 990.Therefore, the effective control of such an EH control system using a PI type closed loop control plus model based valve transform compensation requires very accurate models.
Conclusions
A state of the art electro hydraulic open centered non-pressure compensated implement system was studied to evaluate the potential of implementing velocity servo control to meet both operator response and smoothness performance specifications, and to create a modular sub-system that would accept commands from an autonomous high level planning controller on a WTL vehicle. Closed loop velocity control was successfully implemented on the racking function of the tilt circuit using a standard proportional-integral controller coupled with a dynamic valve transform. The dynamic valve transform is a function of engine speed (hydraulic flow) and rod end cylinder pressure. Inclusion of the dynamic valve transform in real-time control algorithm provides the liberalizing effect similar to a pressure compensated load sensing hydraulic system and results in lower component cost. Robust performance was verified through extensive system modeling and tests on aWTLmodel990 vehicle.