2018-2019學年高中數(shù)學 第八章 解三角形 8.1 正弦定理(二)課件 湘教版必修4.ppt

上傳人:tia****nde 文檔編號:14096337 上傳時間:2020-07-03 格式:PPT 頁數(shù):38 大小:13.87MB
收藏 版權申訴 舉報 下載
2018-2019學年高中數(shù)學 第八章 解三角形 8.1 正弦定理(二)課件 湘教版必修4.ppt_第1頁
第1頁 / 共38頁
2018-2019學年高中數(shù)學 第八章 解三角形 8.1 正弦定理(二)課件 湘教版必修4.ppt_第2頁
第2頁 / 共38頁
2018-2019學年高中數(shù)學 第八章 解三角形 8.1 正弦定理(二)課件 湘教版必修4.ppt_第3頁
第3頁 / 共38頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2018-2019學年高中數(shù)學 第八章 解三角形 8.1 正弦定理(二)課件 湘教版必修4.ppt》由會員分享,可在線閱讀,更多相關《2018-2019學年高中數(shù)學 第八章 解三角形 8.1 正弦定理(二)課件 湘教版必修4.ppt(38頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第8章——,解三角形,8.1 正弦定理(二),[學習目標] 1.熟記并能應用正弦定理的有關變形公式解決三角形中的問題. 2.能根據(jù)條件,判斷三角形解的個數(shù). 3.能利用正弦定理、三角變換、三角形面積公式解決較為復雜的三角形問題.,,1,預習導學 挑戰(zhàn)自我,點點落實,,2,課堂講義 重點難點,個個擊破,,3,當堂檢測 當堂訓練,體驗成功,,,答案 (2),,a∶b∶c,2R,2Rsin A,2Rsin B,2Rsin C,,,,2.三角變換公式 (1)sin (α+β)= ; (2)sin (α-β)= ; (3)sin 2α=

2、 .,sin αcos β+cos αsin β,sin αcos β-cos αsin β,2sin αcos α,要點一 利用正弦定理判斷三角形的形狀 例1 在△ABC中,若sin A=2sin Bcos C,且sin2A=sin2B+sin2C,試判斷△ABC的形狀.,∵sin2A=sin2B+sin2C,,∴A=90,∴B+C=90. 由sin A=2sin Bcos C,得sin 90=2sin Bcos(90-B),,,∵A=180-(B+C),sin A=2sin Bcos C, ∴sin(B+C)=2sin Bcos C. ∴sin Bcos C-cos Bsin C=0, 即

3、sin(B-C)=0.∴B-C=0,即B=C. ∴△ABC是等腰直角三角形.,規(guī)律方法 依據(jù)條件中的邊角關系判斷三角形的形狀時,主要有以下兩種途徑: (1)利用正弦定理把已知條件轉化為邊邊關系,通過因式分解、配方等得出邊的相應關系,從而判斷三角形的形狀; (2)利用正弦定理把已知條件轉化為內角的三角函數(shù)間的關系,通過三角函數(shù)恒等變形得出內角的關系,從而判斷出三角形的形狀,此時要注意應用A+B+C=π這個結論.在兩種解法的等式變形中,一般兩邊不要約去公因式,應移項提取公因式,以免漏解.,跟蹤演練1 在△ABC中,已知a2tan B=b2tan A,試判斷△ABC的形狀.,,,規(guī)律方法 在三角形中

4、解決三角函數(shù)的取值范圍或最值問題的方法: (1)利用正弦定理理清三角形中基本量間的關系或求出某些量. (2)將要求最值或取值范圍的量表示成某一變量的函數(shù)(三角函數(shù)),從而轉化為函數(shù)的值域或最值的問題.,,要點三 正弦定理與三角變換的綜合 例3 已知△ABC的三個內角A,B,C的對邊分別為a,b,c,若a+c=2b,且2cos 2B-8cos B+5=0,求角B的大小并判斷△ABC的形狀. 解 ∵2cos 2B-8cos B+5=0, ∴2(2cos2 B-1)-8cos B+5=0. ∴4cos2 B-8cos B+3=0, 即(2cos B-1)(2cos B-3)=0.,∴△ABC是等邊三

5、角形.,規(guī)律方法 借助正弦定理可以實現(xiàn)三角形中邊角關系的互化,在轉化為角的關系后,常常利用三角變換公式進行化簡,從而進行三角形形狀的判斷、三角恒等式的證明.,跟蹤演練3 已知方程x2-(bcos A)x+acos B=0的兩根之積等于兩根之和,且a、b為△ABC的兩邊,A、B為兩內角,試判斷這個三角形的形狀. 解 設方程的兩根為x1、x2,,∴bcos A=acos B.,由正弦定理得2Rsin Bcos A=2Rsin Acos B, ∴sin Acos B-cos Asin B=0,sin(A-B)=0. ∵A、B為△ABC的內角, ∴0

6、與角B的大小關系為( ) A.A>B B.Asin B?2Rsin A>2Rsin B(R為△ABC外接圓的半徑)?a>b?A>B.,1,2,3,4,5,A,1,2,3,4,5,,A,1,2,3,4,5,,1,2,3,4,5,∴A=45.∴C=75.,答案 C,,1,2,3,4,5,∴tan A=tan B=tan C,∴A=B=C. 答案 B,1,2,3,4,5,1,2,3,4,5,,1,2,3,4,5,所以本題有兩解,由正弦定理得:,故B=60或120.,1,2,3,4,5,,課堂小結 1.已知a,b和A,用正弦定理解三角形的各種情況: (1)列表如下:,,2.判斷三角形的形狀,最終目的是判斷三角形是否是特殊三角形,當所給條件含有邊和角時,應利用正弦定理將條件統(tǒng)一為“邊”之間的關系式或“角”之間的關系式.,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!