《六年級(jí)數(shù)學(xué)下冊(cè)《鴿巢原理》教案設(shè)計(jì)》由會(huì)員分享,可在線閱讀,更多相關(guān)《六年級(jí)數(shù)學(xué)下冊(cè)《鴿巢原理》教案設(shè)計(jì)(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、六年級(jí)數(shù)學(xué)下冊(cè)《鴿巢原理》教案設(shè)計(jì)
六年級(jí)數(shù)學(xué)下冊(cè)《鴿巢原理》教案設(shè)計(jì)
一、學(xué)習(xí)目標(biāo)
(一)學(xué)習(xí)內(nèi)容
《義務(wù)教育教科書(shū)數(shù)學(xué)》(人教版)六年級(jí)下冊(cè)第五單元第68~69頁(yè)的例1、2。“抽屜原理”是一類較為抽象和艱澀的數(shù)學(xué)問(wèn)題,對(duì)全體學(xué)生而言具有一定的挑戰(zhàn)性。為此,教材選擇了一些常見(jiàn)的、熟悉的事物作為學(xué)習(xí)內(nèi)容,經(jīng)歷將具體問(wèn)題“數(shù)學(xué)化”的過(guò)程。
(二)核心能力
經(jīng)歷將具體問(wèn)題“數(shù)學(xué)化”的過(guò)程,初步形成模型思想,發(fā)展抽象能力、推理能力和應(yīng)用能力。
(三)學(xué)習(xí)目標(biāo)
1.理解“鴿巢原理”的基本形式,并能初步運(yùn)用“鴿巢原理”解決相關(guān)的實(shí)
2、際問(wèn)題或解釋相關(guān)的現(xiàn)象。
2.通過(guò)操作、觀察、比較、說(shuō)理等數(shù)學(xué)活動(dòng),經(jīng)歷鴿巢原理的形成活動(dòng),初步形成模型思想,發(fā)展抽象能力、推理能力和應(yīng)用能力。
(四)學(xué)習(xí)重點(diǎn)
了解簡(jiǎn)單的鴿巢問(wèn)題,理解“總有”和“至少”的含義。
(五)學(xué)習(xí)難點(diǎn)
運(yùn)用“鴿巢原理”解決相關(guān)的實(shí)際問(wèn)題或解釋相關(guān)的現(xiàn)象。
(六)配套資源
實(shí)施資源:《鴿巢原理》名師教學(xué)課件
二、學(xué)習(xí)設(shè)計(jì)
(一)課堂設(shè)計(jì)
1.談話導(dǎo)入
師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請(qǐng)一位同學(xué)任意抽5張,不要讓我看到
3、你抽的是什么牌。但是老師卻知道,其中至少有兩張牌是同種花色的,再找一個(gè)學(xué)生再次證明。
師:看來(lái)我兩次都猜對(duì)了。謝謝你們。老師為什么能料事如神呢?到底有什么秘訣呢?學(xué)習(xí)完這節(jié)課以后大家就知道了。
2.問(wèn)題探究
(1)呈現(xiàn)問(wèn)題,引出探究
出示例1:小明說(shuō)“把4支鉛筆放進(jìn)3個(gè)筆筒里。不管怎么放,總有一個(gè)筆筒里至少放進(jìn)2支鉛筆”,他說(shuō)得對(duì)嗎?請(qǐng)說(shuō)明理由。
師:“總有”是什么意思?“至少”有2支是什么意思?
學(xué)生自由發(fā)言。
預(yù)設(shè):一定有
不少于兩只,可能是2支,也可能是多于2支。
就是不能少于2支
4、。
(2)體驗(yàn)探究,建立模型
師:好的,看來(lái)大家已經(jīng)理解題目的意思了。那么把4支鉛筆放進(jìn)3個(gè)筆筒里,可以怎樣放?有幾種不同的擺法?(我們用小棒和紙杯分別表示鉛筆和筆筒)請(qǐng)大家擺擺看,看有什么發(fā)現(xiàn)?
小組活動(dòng):學(xué)生思考,擺放。
①枚舉法
師:大部分同學(xué)都擺完了,誰(shuí)能說(shuō)說(shuō)你們是怎么擺的。能不能邊擺邊給大家說(shuō)。
預(yù)設(shè)1:可以在第一個(gè)筆筒里放4支鉛筆,其它兩個(gè)空著。
師:這種放法可以記作:(4,0,0),這4支鉛筆一定要放在第一個(gè)筆筒里嗎?
(不一定,也可能放在其它筆筒里。)
師:對(duì),也可以記作
5、(0,4,0)或者(0,0,4),但是,不管放在哪個(gè)筆筒里,總有一個(gè)筆筒里放進(jìn)4支鉛筆。還可以怎么放?
預(yù)設(shè)2:第一個(gè)筆筒里放3支鉛筆,第二個(gè)筆筒里放1支,第三個(gè)筆筒空著。
師:這種放法可以記作(3,1,0)
師:這3支鉛筆一定要放在第一個(gè)筆筒里嗎?
(不一定)
師:但是不管怎么放——總有一個(gè)筆筒里放進(jìn)3支鉛筆。
預(yù)設(shè)3:還可以在第一個(gè)筆筒里放2支,第二個(gè)筆筒里也放2支,第三個(gè)筆筒空著,記作(2,2,0)。
師:這2支鉛筆一定要放在第一個(gè)和第二個(gè)筆筒里嗎?還可以怎么記?
預(yù)設(shè):也可能放在第三個(gè)筆筒里
6、,可以記作(2,0,2)、(0,2,2)。
預(yù)設(shè)4:還可以(2,1,1)
或者(1,1,2)、(1,2,1)
師:還有其它的放法嗎?
(沒(méi)有了)
師:在這幾種不同的放法中,裝得最多的那個(gè)筆筒里要么裝有4支鉛筆,要么裝有3支,要么裝有2支,還有裝得更少的情況嗎?(沒(méi)有)
師:這幾種放法如果用一句話概括可以怎樣說(shuō)?
(裝得最多的筆筒里至少裝2支。)
師:裝得最多的那個(gè)筆筒一定是第一個(gè)筆筒嗎?
(不一定,哪個(gè)筆筒都有可能。)
【設(shè)計(jì)意圖:在理解題目要求的基礎(chǔ)上,通過(guò)操作活動(dòng),用畫(huà)圖
7、和數(shù)的分解來(lái)表示上述問(wèn)題的結(jié)果,更直觀。再通過(guò)對(duì)“總有”“至少”的意思的單獨(dú)說(shuō)明,讓學(xué)生更深入地理解“不管怎么放,總有一個(gè)鉛筆盒里至少有2支鉛筆”這句話?!?
②假設(shè)法
師:剛才我們研究了在所有放法中放得最多的筆筒里至少放進(jìn)了幾支鉛筆。怎樣能使這個(gè)放得最多的筆筒里盡可能的少放?
預(yù)設(shè):先把鉛筆平均放,然后剩下的再放進(jìn)其中一個(gè)筆筒里。
師:“平均放”是什么意思?
預(yù)設(shè):先在每個(gè)筆筒里放一支鉛筆,還剩一支鉛筆,再隨便放進(jìn)一個(gè)筆筒里。
師:為什么要先平均分?
學(xué)生自由發(fā)言。
引導(dǎo)小結(jié):因?yàn)檫@樣分,只分一次就
8、能確定總有一個(gè)筆筒至少有幾支筆了。
師:好!先平均分,每個(gè)筆筒中放1支,余下1支,不管放在哪個(gè)筆筒里,一定會(huì)出現(xiàn)總有一個(gè)筆筒里至少有2支鉛筆。
師:這種思考方法其實(shí)是從最不利的情況來(lái)考慮,先平均分,每個(gè)筆筒里都放一支,就可以使放得較多的這個(gè)筆筒里的鉛筆盡可能的少。這樣,就能很快得出不管怎么放,總有一個(gè)筆筒里至少放進(jìn)2支鉛筆。我們可以用算式把這種想法表示出來(lái)。
【設(shè)計(jì)意圖:讓學(xué)生自己通過(guò)觀察比較得出“平均分”的方法,將解題經(jīng)驗(yàn)上升為理論水平,進(jìn)一步強(qiáng)化方法、理清思路?!?
(3)提升思維,建立模型
①加深感悟
師:如果把5支筆
9、放進(jìn)4個(gè)筆筒里呢?大家討論討論。
預(yù)設(shè):5支鉛筆放在4個(gè)筆筒里,先平均分,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。
師:把7支筆放進(jìn)6個(gè)筆筒里呢?還用擺嗎?
學(xué)生自由發(fā)言。
師:把10支筆放進(jìn)9個(gè)筆筒里呢?把100支筆放進(jìn)99個(gè)筆筒里呢?
師:你發(fā)現(xiàn)了什么?
預(yù)設(shè):我發(fā)現(xiàn)鉛筆的支數(shù)比筆筒數(shù)多1,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。
師:你的發(fā)現(xiàn)和他一樣嗎?
學(xué)生自由發(fā)言。
師:你們太了不起了!
師:難道這個(gè)規(guī)律只有在鉛筆的支數(shù)比筆筒數(shù)多1的情況下才成立嗎?你認(rèn)為還有什
10、么情況?
練一練:
師:我們來(lái)看這道題“5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)了2只鴿子,為什么?”
師:說(shuō)說(shuō)你的想法。
師:由此看來(lái),只要分的物體比抽屜的數(shù)量多,就總有一個(gè)抽屜里至少放進(jìn)2個(gè)物體。這就是最簡(jiǎn)單的鴿巢原理?!景鍟?shū)課題】
介紹狄利克雷:
師:鴿巢原理最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)應(yīng)用于解決問(wèn)題的,后來(lái)人們?yōu)榱思o(jì)念他從這么平凡的事情中發(fā)現(xiàn)的規(guī)律,就把這個(gè)規(guī)律用他的名字命名,叫狄利克雷原理,也叫抽屜原理。
②建立模型
出示例2:一位同學(xué)學(xué)完了“鴿巢原理”后說(shuō):把7本書(shū)放進(jìn)
11、3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有3本書(shū)。他說(shuō)得對(duì)嗎?
學(xué)生獨(dú)立思考、討論后匯報(bào):
師:怎樣用算式表示我們的想法呢?生答,板書(shū)如下。
73=2本……1本(2+1=3)
師:如果有10本書(shū)會(huì)怎么樣能?會(huì)用算式表示嗎?寫(xiě)下來(lái)。
出示:
把10本書(shū)放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書(shū)?
103=3本……1本(3+1=4)
師:觀察板書(shū)你有什么發(fā)現(xiàn)?
預(yù)設(shè):我發(fā)現(xiàn)“總有一個(gè)抽屜里至少有2本”,只要用“商+1”就可以得到。
師:那如果把8本書(shū)放進(jìn)3個(gè)抽屜里,
12、不管怎么放,總有一個(gè)抽屜里至少有幾本書(shū)?請(qǐng)大家算一算。
學(xué)生討論,匯報(bào):
83=2……22+1=3
83=2……22+2=4
師:到底是“商+1”還是“商+余數(shù)”呢?誰(shuí)的結(jié)論對(duì)呢?在小組里進(jìn)行研究、討論。
師:認(rèn)真觀察,你認(rèn)為“抽屜里至少有幾本書(shū)”或“鴿籠里至少有幾只鴿子”可能與什么有關(guān)?
預(yù)設(shè):我認(rèn)為根“商”有關(guān),只要用“商+1”就可以得到。
師:我們一起來(lái)看看是不是這樣(引導(dǎo)學(xué)生再觀察幾個(gè)算式)?。」皇侵灰谩吧蹋?”就可以了。
引導(dǎo)總結(jié):我們把要分的物體數(shù)量看做a,抽屜的個(gè)數(shù)看做n,如果滿足
13、【an=b……c(c≠0)】,那么不管怎樣放,總有一個(gè)抽屜里至少放(b+1)本書(shū)。這就是抽屜原理的一般形式。
鴿巢原理可以廣泛地運(yùn)用于生活中,來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。解決這類問(wèn)題時(shí)要注意把誰(shuí)看做“抽屜”。
【設(shè)計(jì)意圖:借助直觀操作和假設(shè)法,將問(wèn)題轉(zhuǎn)化為“有余數(shù)的除法”的形式??梢允箤W(xué)生更好地理解“抽屜原理”的一般思路,經(jīng)歷將具體問(wèn)題“數(shù)學(xué)化”的過(guò)程,初步形成模型思想,發(fā)展抽象能力、推理能力和應(yīng)用能力??疾槟繕?biāo)1、2】
3.鞏固練習(xí)
(1)學(xué)習(xí)了“鴿巢原理”,我們?cè)倩氐秸n前的“撲克牌”游戲,你現(xiàn)在能解釋一下嗎?(出示課件)學(xué)生思考,討論。
14、 (2)第69頁(yè)的做一做第1、2題。
4.全課總結(jié)
師:通過(guò)這節(jié)的學(xué)習(xí),你有什么收獲?
小結(jié):今天這節(jié)課我們一起研究了鴿巢原理,也叫抽屜原理,解決抽屜原理問(wèn)題關(guān)鍵就是找準(zhǔn)物體和抽屜,在一些復(fù)雜的題中,還需要我們?nèi)ブ圃斐閷稀?
(三)課時(shí)作業(yè)
1.一個(gè)小組共有13名同學(xué),其中至少有幾名同學(xué)同一個(gè)月出生?
答案:2名。
解析:把1—12月看作是12個(gè)抽屜,1312=1…11+1=2【考查目標(biāo)1、2】
2.希望小學(xué)籃球興趣小組的同學(xué)中,最大的12歲,最小的6歲,最少?gòu)闹刑暨x幾名學(xué)生,就一定能找到兩個(gè)學(xué)生年齡相同。
答案:8名。
解析:從6歲到12歲一共有7個(gè)年齡段,即6歲、7歲、8歲、9歲、10歲、11歲、12歲。用7+1=8(名)【考查目標(biāo)1、2】