《2014屆高考數(shù)學(xué)總復(fù)習(xí) 課時(shí)提升作業(yè)(二十九) 第五章 第一節(jié) 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《2014屆高考數(shù)學(xué)總復(fù)習(xí) 課時(shí)提升作業(yè)(二十九) 第五章 第一節(jié) 文(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、課時(shí)提升作業(yè)(二十九)
一、選擇題
1.已知數(shù)列,,,…,,…,下面各數(shù)中是此數(shù)列中的項(xiàng)的是 ( )
(A) (B) (C) (D)
2.由a1=1,an+1=,給出的數(shù)列{an}的第34項(xiàng)為 ( )
(A) (B)100
(C) (D)
3.(2013·南昌模擬)已知數(shù)列{an}的前n項(xiàng)和Sn=2-2n+1,則a3= ( )
(A)-1 (B)-2 (C)-4 (D)-8
4.已知數(shù)列{an}的前n項(xiàng)和Sn=2n2-3n+1,則a4+a5+a6+a7+a8+a9+a10的值為 ( )
(A)150 (B)161 (C)160
2、 (D)171
5.(2013·西安模擬)在數(shù)列{an}中,a1=1,anan-1=an-1+(-1)n(n≥2,n∈N+),則的值是
( )
(A) (B) (C) (D)
6.在數(shù)列{an}中,a1=2,an+1=an+ln(1+),則an= ( )
(A)2+lnn (B)2+(n-1)lnn
(C)2+nlnn (D)1+n+lnn
7.已知數(shù)列{an}的前n項(xiàng)和Sn=n2-9n,第k項(xiàng)滿足50,y>0),已
3、知數(shù)列{an}滿足:an=(n∈N+),若對(duì)任意正整數(shù)n,都有an≥ak(k∈N+)成立,則ak的值為 ( )
(A) (B)2 (C)3 (D)4
二、填空題
9.數(shù)列-,,-,,…的一個(gè)通項(xiàng)公式可以是 .
10.數(shù)列{an}的前n項(xiàng)和記為Sn,a1=1,an+1=2Sn+1(n≥1,n∈N+),則數(shù)列{an}的通項(xiàng)公式是 .
11.(2013·贛州模擬)已知數(shù)列{an}滿足a1=,an-1-an=(n≥2),則該數(shù)列的通項(xiàng)公式an= .
12.(能力挑戰(zhàn)題)已知數(shù)列{an}滿足:a1=m(m為正整數(shù)),an+1=若a6=1,則m所有可能的值為
4、 .
三、解答題
13.已知數(shù)列{an}滿足前n項(xiàng)和Sn=n2+1,數(shù)列{bn}滿足bn=,且前n項(xiàng)和為Tn,設(shè)cn=T2n+1-Tn.
(1)求數(shù)列{bn}的通項(xiàng)公式.
(2)判斷數(shù)列{cn}的增減性.
14.(能力挑戰(zhàn)題)解答下列各題:
(1)在數(shù)列{an}中,a1=1,an+1=can+cn+1(2n+1)(n∈N+),其中實(shí)數(shù)c≠0.求{an}的通項(xiàng)公式.
(2)數(shù)列{an}滿足:a1=1,an+1=3an+2n+1(n∈N+),求{an}的通項(xiàng)公式.
15.(2012·廣東高考)設(shè)數(shù)列{an}前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Sn-n2,n∈N
5、+.
(1)求a1的值.
(2)求數(shù)列{an}的通項(xiàng)公式.
答案解析
1.【解析】選B.∵42=6×7,故選B.
2.【解析】選C.把遞推式取倒數(shù)得=+3,
所以=+3×(34-1)=100,
所以a34=.
3.【解析】選D.a3=S3-S2=-14-(-6)=-8.
4.【解析】選B.S10-S3=(2×102-3×10+1)-(2×32-3×3+1)=161.
5.【解析】選C.當(dāng)n=2時(shí),a2·a1=a1+(-1)2,∴a2=2.
當(dāng)n=3時(shí),a3a2=a2+(-1)3,∴a3=.
當(dāng)n=4時(shí),a4a3=a3+(-1)4,∴a4=3.
當(dāng)n=5時(shí),a5
6、a4=a4+(-1)5,∴a5=,∴=.
6.【思路點(diǎn)撥】根據(jù)遞推式采用“疊加”方法求解.
【解析】選A.∵an+1=an+ln(1+)=an+ln=an+ln(n+1)-lnn,
∴a2=a1+ln2,a3=a2+ln3-ln2,…,an=an-1+lnn-ln(n-1),
將上面n-1個(gè)式子左右兩邊分別相加得an=a1+ln2+(ln3-ln2)+(ln4-ln3)+…+[lnn-ln(n-1)]=a1+lnn=2+lnn.
7.【解析】選B.an=
即an=
∵n=1時(shí)也適合an=2n-10,∴an=2n-10.
∵5
7、k∈N+,∴k=8.
8.【解析】選A.an=,==,2n2-(n+1)2=n2-2n-1,只有當(dāng)n=1,2時(shí),2n2<(n+1)2,當(dāng)n≥3時(shí),2n2>(n+1)2,即當(dāng)n≥3時(shí),an+1>an,故數(shù)列{an}中的最小項(xiàng)是a1,a2,a3中的較小者,a1=2,a2=1,a3=,故ak的值為.
9.【解析】正負(fù)相間使用(-1)n,觀察可知第n項(xiàng)的分母是2n,分子比分母的值少1,故an=(-1)n.
答案:an=(-1)n
10.【思路點(diǎn)撥】根據(jù)an和Sn的關(guān)系轉(zhuǎn)換an+1=2Sn+1(n≥1)為an+1與an的關(guān)系或者Sn+1與Sn的關(guān)系.
【解析】方法一:由an+1=2Sn+1可得
8、an=2Sn-1+1(n≥2),兩式相減得an+1-an=2an,an+1=3an(n≥2).
又a2=2S1+1=3,
∴a2=3a1,故{an}是首項(xiàng)為1,公比為3的等比數(shù)列,
∴an=3n-1.
方法二:由于an+1=Sn+1-Sn,
an+1=2Sn+1,
所以Sn+1-Sn=2Sn+1,Sn+1=3Sn+1,
把這個(gè)關(guān)系化為Sn+1+=3(Sn+),
即得數(shù)列{Sn+}為首項(xiàng)是S1+=,
公比是3的等比數(shù)列,故Sn+=×3n-1=×3n,
故Sn=×3n-.
所以,當(dāng)n≥2時(shí),an=Sn-Sn-1=3n-1,
由n=1時(shí)a1=1也適合這個(gè)公式,知所求的數(shù)列{a
9、n}的通項(xiàng)公式是an=3n-1.
答案:an=3n-1
【方法技巧】an和Sn關(guān)系的應(yīng)用技巧
在根據(jù)數(shù)列的通項(xiàng)an與前n項(xiàng)和的關(guān)系求解數(shù)列的通項(xiàng)公式時(shí),要考慮兩個(gè)方面,一個(gè)是根據(jù)Sn+1-Sn=an+1把數(shù)列中的和轉(zhuǎn)化為數(shù)列的通項(xiàng)之間的關(guān)系;一個(gè)是根據(jù)an+1=Sn+1-Sn把數(shù)列中的通項(xiàng)轉(zhuǎn)化為前n項(xiàng)和的關(guān)系,先求Sn再求an.
11.【解析】由遞推公式變形,得
-==-,
則-=1-,-=-,…,
-=-,
各式相加得-=1-,
即=,
∴an=.
答案:
12.【解析】根據(jù)遞推式以及a1=m(m為正整數(shù))可知數(shù)列{an}中的項(xiàng)都是正整數(shù).
a6=1,若a6=,則a
10、5=2,若a6=3a5+1,則a5=0,故只能是a5=2.
若a5=,則a4=4,若a5=3a4+1,則a4=,故只能是a4=4.
若a4=,則a3=8,若a4=3a3+1,則a3=1.
(1)當(dāng)a3=8時(shí),若a3=,則a2=16,若a3=3a2+1,則a2=,故只能是a2=16,若a2=,則a1=32,若a2=3a1+1,則a1=5.
(2)當(dāng)a3=1時(shí),若a3=,則a2=2,若a3=3a2+1,則a2=0,故只能是a2=2.
若a2=,則a1=4,若a2=3a1+1,則a1=,故只能是a1=4.
綜上所述:a1的值,即m的值只能是4或5或32.
答案:4或5或32
【變式備
11、選】已知數(shù)列{an}中,a1=,an+1=1-(n≥2),則a16= .
【解析】由題可知a2=1-=-1,a3=1-=2,a4=1-=,∴此數(shù)列為循環(huán)數(shù)列,a1=a4=a7=a10=a13=a16=.
答案:
13.【解析】(1)a1=2,an=Sn-Sn-1=2n-1(n≥2).
∴bn=
(2)∵cn=bn+1+bn+2+…+b2n+1
=++…+,
∴cn+1-cn=+-
=<0,
∴{cn}是遞減數(shù)列.
14.【解析】(1)由原式得=+(2n+1).令bn=,
則b1=,bn+1=bn+(2n+1),
因此對(duì)n≥2有bn=(bn-bn-1)+(bn-1-b
12、n-2)+…+(b2-b1)+b1
=(2n-1)+(2n-3)+…+3+=n2-1+,
因此an=(n2-1)cn+cn-1,n≥2.
又當(dāng)n=1時(shí)上式成立.
因此an=(n2-1)cn+cn-1,n∈N+.
(2)兩端同除以2n+1得,=·+1,
即+2=(+2),
即數(shù)列{+2}是首項(xiàng)為+2=,公比為的等比數(shù)列,
故+2=×()n-1,即an=5×3n-1-2n+1.
15.【解析】(1)當(dāng)n=1時(shí),T1=2S1-1.
因?yàn)門1=S1=a1,所以a1=2a1-1,求得a1=1.
(2)當(dāng)n≥2時(shí),Sn=Tn-Tn-1
=2Sn-n2-[2Sn-1-(n-1)2]
=2Sn-2Sn-1-2n+1,所以Sn=2Sn-1+2n-1?、?
所以Sn+1=2Sn+2n+1 ②,
②-①得an+1=2an+2,
所以an+1+2=2(an+2),
即=2(n≥2),
求得a1+2=3,a2+2=6,則=2.
所以{an+2}是以3為首項(xiàng),2為公比的等比數(shù)列,
所以an+2=3·2n-1,
所以an=3·2n-1-2,n∈N+.