高中數(shù)學(xué) 1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)課件 新人教A版選修2-2.ppt

上傳人:tia****nde 文檔編號(hào):14904299 上傳時(shí)間:2020-08-01 格式:PPT 頁(yè)數(shù):23 大?。?17KB
收藏 版權(quán)申訴 舉報(bào) 下載
高中數(shù)學(xué) 1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)課件 新人教A版選修2-2.ppt_第1頁(yè)
第1頁(yè) / 共23頁(yè)
高中數(shù)學(xué) 1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)課件 新人教A版選修2-2.ppt_第2頁(yè)
第2頁(yè) / 共23頁(yè)
高中數(shù)學(xué) 1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)課件 新人教A版選修2-2.ppt_第3頁(yè)
第3頁(yè) / 共23頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)課件 新人教A版選修2-2.ppt》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高中數(shù)學(xué) 1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)課件 新人教A版選修2-2.ppt(23頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、1.3.1 函數(shù)的單調(diào)性與導(dǎo)數(shù),1.求過(guò)曲線(xiàn)y=x3-2x上的點(diǎn)(1,-1)的切線(xiàn)方程,求過(guò)某點(diǎn)的曲線(xiàn)的切線(xiàn)方程時(shí),除了要判斷該點(diǎn)是否 在曲線(xiàn)上,還要分“該點(diǎn)是切點(diǎn)”和“該點(diǎn)不是切點(diǎn)”兩種 情況進(jìn)行討論,解法復(fù)制。若設(shè)M(x0,y0)為曲線(xiàn)y=f(x)上 一點(diǎn),則以M為切點(diǎn)的曲線(xiàn)的切線(xiàn)方程可設(shè)為 y-y0=f(x)(x-x0),利用此切線(xiàn)方程可以簡(jiǎn)化解題,避免 疏漏。,(4).對(duì)數(shù)函數(shù)的導(dǎo)數(shù):,(5).指數(shù)函數(shù)的導(dǎo)數(shù):,,(3).三角函數(shù) :,(1).常函數(shù):(C)/ 0, (c為常數(shù));,,(2).冪函數(shù) : (xn)/ nxn1,一、復(fù)習(xí)回顧:基本初等函數(shù)的導(dǎo)數(shù)公式,函數(shù) y = f (x

2、) 在給定區(qū)間 G 上,當(dāng) x 1、x 2 G 且 x 1 x 2 時(shí),函數(shù)單調(diào)性判定,單調(diào)函數(shù)的圖象特征,,,,,,,1)都有 f ( x 1 ) f ( x 2 ),,則 f ( x ) 在G 上是增函數(shù);,2)都有 f ( x 1 ) f ( x 2 ),,則 f ( x ) 在G 上是減函數(shù);,若 f(x) 在G上是增函數(shù)或減函數(shù),,增函數(shù),減函數(shù),則 f(x) 在G上具有嚴(yán)格的單調(diào)性。,G 稱(chēng)為單調(diào)區(qū)間,,,G = ( a , b ),二、復(fù)習(xí)引入:,,在( ,0)和(0, ) 上分別是減函數(shù)。但在定義域上不是減函數(shù)。,在( ,1)上是減函數(shù),在(1, )上是增函數(shù)。,在( ,)上是

3、增函數(shù),概念回顧,畫(huà)出下列函數(shù)的圖像,并根據(jù)圖像指出每個(gè)函數(shù)的單調(diào)區(qū)間,(1)函數(shù)的單調(diào)性也叫函數(shù)的增減性;,(2)函數(shù)的單調(diào)性是對(duì)某個(gè)區(qū)間而言的,它是個(gè)局部概 念。這個(gè)區(qū)間是定義域的子集。,(3)單調(diào)區(qū)間:針對(duì)自變量x而言的。 若函數(shù)在此區(qū)間上是增函數(shù),則為單調(diào)遞增區(qū)間; 若函數(shù)在此區(qū)間上是減函數(shù),則為單調(diào)遞減區(qū)間。,以前,我們用定義來(lái)判斷函數(shù)的單調(diào)性.在假設(shè)x1

4、間 t 變化的函數(shù) 的圖象, 圖(2)表示高臺(tái)跳水運(yùn)動(dòng)員的速度 v 隨時(shí)間 t 變化的函數(shù) 的圖象. 運(yùn)動(dòng)員從起跳到最高點(diǎn), 以及從最高點(diǎn)到入水這兩段時(shí)間的運(yùn)動(dòng)狀態(tài)有什么區(qū)別?,,,,,,,,,a,a,b,b,t,t,v,h,O,O,運(yùn)動(dòng)員從起跳到最高點(diǎn),離水面的高度h隨時(shí)間t 的增加而增加,即h(t)是增函數(shù).相應(yīng)地,,從最高點(diǎn)到入水,運(yùn)動(dòng)員離水面的高度h隨時(shí)間t的增加而減少,即h(t)是減函數(shù).相應(yīng)地,,(1),(2),,,x,y,O,x,y,O,x,y,O,x,y,O,y = x,y = x2,y = x3,觀(guān)察下面一些函數(shù)的圖象, 探討函數(shù)的單調(diào)性與其導(dǎo)

5、函數(shù)正負(fù)的關(guān)系.,在某個(gè)區(qū)間(a,b)內(nèi),如果 ,那么函數(shù) 在這個(gè)區(qū)間內(nèi)單調(diào)遞增; 如果 ,那么函數(shù) 在這個(gè)區(qū)間內(nèi)單調(diào)遞減.,如果恒有 ,則 是常數(shù)。,題1 已知導(dǎo)函數(shù) 的下列信息:,當(dāng)1 < x < 4 時(shí),,當(dāng) x 4 , 或 x < 1時(shí),,當(dāng) x = 4 , 或 x = 1時(shí),,試畫(huà)出函數(shù) 的圖象的大致形狀.,解:,當(dāng)1 < x < 4 時(shí), 可知 在此區(qū)間內(nèi)單調(diào)遞增;,當(dāng) x 4 , 或 x < 1時(shí), 可知 在此區(qū)間內(nèi)單調(diào)遞減;,當(dāng) x = 4 , 或 x = 1時(shí),,綜上, 函數(shù) 圖象的大致形狀如右圖所示.,,,,,,題2

6、 判斷下列函數(shù)的單調(diào)性, 并求出單調(diào)區(qū)間:,解:,(1) 因?yàn)? , 所以,因此, 函數(shù) 在 上單調(diào)遞增.,(2) 因?yàn)? , 所以,當(dāng) , 即 時(shí), 函數(shù) 單調(diào)遞增;,當(dāng) , 即 時(shí), 函數(shù) 單調(diào)遞減.,題2 判斷下列函數(shù)的單調(diào)性, 并求出單調(diào)區(qū)間:,解:,(3) 因?yàn)? , 所以,因此, 函數(shù) 在 上單調(diào)遞減.,(4) 因?yàn)? , 所以,當(dāng) , 即 時(shí), 函數(shù) 單調(diào)遞增;,當(dāng) , 即

7、 時(shí), 函數(shù) 單調(diào)遞減.,1、求可導(dǎo)函數(shù)f(x)單調(diào)區(qū)間的步驟: (1)求f(x) (2)解不等式f(x)0(或f(x)<0) (3)確認(rèn)并指出遞增區(qū)間(或遞減區(qū)間),2、證明可導(dǎo)函數(shù)f(x)在(a,b)內(nèi)的單調(diào)性的方法: (1)求f(x) (2)確認(rèn)f(x)在(a,b)內(nèi)的符號(hào) (3)作出結(jié)論,練習(xí),判斷下列函數(shù)的單調(diào)性, 并求出單調(diào)區(qū)間:,例3 如圖, 水以常速(即單位時(shí)間內(nèi)注入水的體積相同)注入下面四種底面積相同的容器中, 請(qǐng)分別找出與各容器對(duì)應(yīng)的水的高度h與時(shí)間t的函數(shù)關(guān)系圖象.,(A),(B),(C),(D),,,,,,,,,,,,,h,t,O,h,t,O,h,t,O,h,t,O

8、,一般地, 如果一個(gè)函數(shù)在某一范圍內(nèi)導(dǎo)數(shù)的絕對(duì)值較大, 那么函數(shù)在這個(gè)范圍內(nèi)變化得快, 這時(shí), 函數(shù)的圖象就比較“陡峭”(向上或向下); 反之, 函數(shù)的圖象就“平緩”一些.,如圖,函數(shù) 在 或 內(nèi)的圖象“陡峭”,在 或 內(nèi)的圖象平緩.,練習(xí),2.函數(shù) 的圖象如圖所示, 試畫(huà)出導(dǎo)函數(shù) 圖象的大致形狀,練習(xí),3.討論二次函數(shù) 的單調(diào)區(qū)間.,解:,由 , 得 , 即函數(shù) 的遞增區(qū)間是 ; 相應(yīng)地, 函數(shù)的遞減區(qū)間是,由 , 得 , 即函數(shù) 的遞增區(qū)間是 ; 相應(yīng)地, 函數(shù)的遞減區(qū)間是,練習(xí),4.求證: 函數(shù) 在 內(nèi)是減函數(shù).,解:,由 , 解得 , 所以函數(shù) 的遞減區(qū)間是 , 即函數(shù) 在 內(nèi)是減函數(shù).,一、求參數(shù)的取值范圍,增例2:求參數(shù),,解:由已知得,因?yàn)楹瘮?shù)在(0,1上單調(diào)遞增,增例2:,,在某個(gè)區(qū)間上, ,f(x)在這個(gè)區(qū)間上單調(diào)遞增 (遞減);但由f(x)在這個(gè)區(qū)間上單調(diào)遞增(遞減)而 僅僅得到 是不夠的。還有可能導(dǎo)數(shù)等于0 也能使f(x)在這個(gè)區(qū)間上單調(diào), 所以對(duì)于能否取到等號(hào)的問(wèn)題需要單獨(dú)驗(yàn)證,增例2:,,本題用到一個(gè)重要的轉(zhuǎn)化:,作業(yè): 已知函數(shù)f(x)=ax+3x-x+1在R上是減函數(shù),求a的取值范圍。,

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!