煤礦絞車設計含開題及9張CAD圖
煤礦絞車設計含開題及9張CAD圖,煤礦,絞車,設計,開題,cad
XXXXXX
XXX設計(XXX)中期檢查表
指導教師: 職稱: 副教授
所在院(系): 教研室(系、研究所):
題 目
煤礦轎車設計
學生姓名
專業(yè)班級
學 號
一、 選題質(zhì)量及開題報告完成情況
該選題是礦用調(diào)度絞車設計,可以對大學四年所學知識進行一次全面的練習。這
將對以后工作起到十分有效的幫助,也能達到一個綜合訓練的效果,又加強了實際的
動手動腦能力。題目的難易程度很適中,對我們既是一個挑戰(zhàn)也是一個很好的鍛煉提
高過程。題目的工作量:要求完成3張以上的A0圖紙,50頁說明書一份。選題不僅
能緊密的結合生產(chǎn)和實踐,也是在我們所學習過的范圍之類,對我們以后不管是科研
還是從事實際的工作對有很大的幫助。
在老師指導和同學們的幫助之下,經(jīng)過一番查閱資料,我順利的開始了本次畢業(yè)
設計。我們專業(yè)課介紹過絞車,但只是個大概,所以我對調(diào)度絞車的了解明顯不夠。
剛開始的時候不是很順利,甚至是無從著手。后來經(jīng)過網(wǎng)上查找相關資料和老師的引
導,慢慢的找到設計入口,清楚了設計過程,順利的完成開題報告。
目前,前期的工作已做了一部分,并有了一定的成果。現(xiàn)在已經(jīng)進入了各部件計
算設計過程,我將在以后工作中繼續(xù)努力,認真完成這次畢業(yè)設計,檢測一下自己的
真實能力。
二、階段性成果:
1、這次的畢業(yè)設計方案已經(jīng)確定,而且完成了調(diào)度絞車整體結構的初步設計,
正在進行各部件的精確計算;
2、目前,已經(jīng)完成了滾筒的選擇、傳動齒輪的精確計算以及輪轂的計算等。
已經(jīng)形成了整體的設計思路。
三、存在的主要問題及解決方法:
存在問題:剛開始進展的并不是很順利,我對調(diào)度絞車這方面的知識掌握也不夠
完善,這是我第一次單獨進行課題設計,很多專業(yè)問題及具體的細節(jié)不知怎么處理,
整個設計的過程也不是很清楚。
解決方法:在圖書館和網(wǎng)上查找相關資料,對有關調(diào)度絞車的知識進行更深入的了解,查詢專業(yè)資料搞清遇見的問題,向?qū)W長請教予以指導,和同學交流獲取解決辦法。在
指導老師的指引下,我相信我能把各方面的問題逐個擊破,最終順利完成畢業(yè)設計。
四、指導教師對學生在畢業(yè)設計(論文)中的紀律及畢業(yè)設計(論文)任務的完成進展等方面的評語
指導教師: (簽名)
年 月 日
XXXXXXXX
XXX設計(XXX)開題報告
題目名稱
煤礦絞車設計
學生姓名
專業(yè)班級
學號
一、選題的目的和意義
礦用調(diào)度絞車是煤礦必不可少的運輸機械。當前我國的礦用機械正處于快速發(fā)展階段,作為一位即將從事煤礦機械工作的本科畢業(yè)生,我將這次的畢業(yè)設計題目確定為礦用調(diào)度絞車。
調(diào)度絞車主要用于礦井下調(diào)度礦車及其它輔助牽引用,亦可用于煤礦、冶金礦山、建筑工地等場合作拖運、提升工作或其他輔助搬運工作。其結構緊湊,操作簡單,搬運方便,所以運用范圍廣泛。但是當前我國的調(diào)度絞車壽命、噪音、可靠性等綜合性技術指標與國外有差距,所以選擇此課題希望能夠?qū)Ξ斍罢{(diào)度絞車有所改進,使其性能更加完善可靠。
此課題不僅能綜合運用專業(yè)知識而且訓練解決實際問題的能力。同時也促進我國礦用調(diào)度絞車的進步,促進我國礦業(yè)的發(fā)展。
二、國內(nèi)外研究綜述
我國調(diào)度絞車的生產(chǎn)經(jīng)歷了仿制和自行設計兩個階段。50年代測繪仿制了日本、蘇聯(lián)的各型絞車。1958年后,蘇聯(lián)DJ14.5型和日本內(nèi)齒輪相繼淘汰。1960年對調(diào)度絞車進行了方案整頓,型號用DJ表示,保留了DJ4.5、DJ11.4型兩種規(guī)格。從1964年開始自行設計了調(diào)度絞車,目前我國已投入批量生產(chǎn)。
我國調(diào)度絞車的結構為多猩猩齒輪轉(zhuǎn)動,結構緊湊,體積小,重量輕,操作簡單,搬運方便,適于礦山井下使用。近幾年各廠加強了新產(chǎn)品的研制工作,對產(chǎn)品的結構進行了很大的改進和創(chuàng)新,在提高壽命、降低噪聲方面取得了一定的效果。
調(diào)度絞車在國外使用也很普遍,生產(chǎn)廠家也很多。根據(jù)目前收集到的資料,蘇、法、美、英、波、捷、匈、羅、加拿大、丹麥、瑞典等國家都在制造絞車,有國家從三十年代就已生產(chǎn)。種類繁多,規(guī)格較多,拉力小到100kg,大到3600kg。動力有電動、液動和風動。工作機構有單筒、雙筒和摩擦式。傳統(tǒng)形式有皮帶傳動、鏈式傳動、齒輪傳動、蝸輪傳動、液壓傳動、行星齒輪傳動和擺線傳動等。其中用行星齒輪傳動的比較多。
縱觀國內(nèi)外調(diào)度絞車的發(fā)展概況,其發(fā)展趨勢有以下幾個特點:
1)向標準化、系列化方向發(fā)展;
2)向體積小、重量輕、結構緊湊方向發(fā)展;
3)向高效、節(jié)能方向發(fā)展;
4)向壽命長、低噪音方向發(fā)展;
5)向一機多能,通用化方向發(fā)展;
6)向大功率方向發(fā)展;
7)向外形簡單、平滑、美觀大方方向發(fā)展。
當前我國調(diào)度絞車還存在一些不足之處。主要是壽命、噪音、可靠性等綜合性技術指標與國外有差距。由于我國尚不具備測試手段,是壽命無法考核,噪聲也比較大,目前還不能達到環(huán)保衛(wèi)生部門的要求。在可靠性方面,目前尚無要求。這些反映了我國的產(chǎn)品質(zhì)量還存在一定差距。所以我國還需要加強對調(diào)度絞車這個學科的建設,努力完善各方面測試手段及性能要求。
三、畢業(yè)設計(論文)所用的主要技術與方法:
在這次設計中我們將采用機械圖形設計軟件AutoCAD或Pro E進行繪圖。首先設計整體轉(zhuǎn)動系統(tǒng),然后初步設計整體結構,最后精確設計絞車。在設計的過程中如果發(fā)現(xiàn)遺漏或不合理的地方我還會及時補充上去或予以糾正。
四、主要參考文獻與資料獲得情況
1. 主要參考文獻如下:
[1]《機械零件》(第七版),濮良貴、紀名剛主編,高等教育出版社
[2] 《機械設計手冊》(第三版),化學工業(yè)出版社
[3] 《新編機械設計手冊》 張麗驊、鄭嚴主編,人民郵電出版社
[4] 《機械設計基礎》 李育錫主編,高級教育出版社
[5] 《機械設計手冊》 (單行本)齒輪傳動,機械工業(yè)出版社
[6] 《機械原理》(第七版)鄭文偉、吳克堅主編,高等教育出版社
[7] 《機械工程師手冊》(第二版)機械工業(yè)出版社
[8] 《英漢雙向機電詞典》 上海交通大學出版社
[9] 《現(xiàn)代機械優(yōu)化設計方法》(第二版).化學工業(yè)出版社
[10]《機械傳動手冊》 電子工業(yè)出版社
[11]《機械原理.》 孫恒、陳作模主編.高等教育出版社
[12]《Auto CAD2007計算機繪圖實用教程》 張愛梅、鞏琦、趙艷霞、李玉林主編 .高等教育出版社
[13]《行星傳動設計與計算》 王容、胡來主編 煤炭工業(yè)出版社
2.資料獲取情況如下:
1) 從學校圖書館借閱相關圖書;
2) 從網(wǎng)上搜索相關資料,例如在學校圖書館網(wǎng)頁上下載相關文獻或期刊;
3) 在設計過程中遇到難題時向指導老師和專業(yè)老師請教,同時與同學交流獲取相關信息。
五、畢業(yè)設計(論文)進度安排:
1)5~7周:畢業(yè)實習、還收集部分資料并確定畢業(yè)設計課題;
2)8~10周:初步確定設計方案,寫開題報告,進行畢業(yè)設計的基本計算;
3)11~13周:排版整理畢業(yè)設計說明書和用CAD軟件進行繪制零件圖、裝配圖;
4)14~15周:對畢業(yè)設計進行修改、完善,準備答辯。
六、指導教師審批意見
指導教師: (簽名)
年 月 日
附錄
外文資料與中文翻譯
外文資料:
MICRO PLANETARY REDUCTION GEAR USING SURFACE-MICROMACHINING
Abstract
A micro planetary gear mechanism featuring a high gear reduction ratio with compactness in size ispresented in this paper. SUMMiT V is employed for the fabrication method so that the redundancy of assembling parts is eliminated. The design rules of which has also been checked. To make full use of the benefits of the surface- micro - machining, the planetary reduction gear is designed toward using the on-chip micro- engine. The expected gearreduction ratio is calculated and compared with the conventional chain gear mechanism. The microplanetary gear mechanism presented in this paper is expected to have 162:1 reduction ratio utilizing less space consumption. This is an order of magnitude higher than the previously reported design in a single reduction gear train.
Keywords:MEMS, Planetary gear, Reduction gear surface-micromachining, SUMMiT V process
Nomenclature
a sun gear
b planet gears
c internal gear (fixed)
d internal gear (rotary)
n the number of units of gear train
D diameter of the pitch circle
N number of teeth
P number of planets
angular velocity
Introduction
The gear mechanisms in microelectro mechanical systems(MEMS) are commonly expected to generate high torque in the confined micro-size systems. However, it is generally difficult for the micro-scale systems to have such a high torque without having multiple reduction systems.
The design of the reduction gear drive based on a planetary paradox gear mechanism can increase the torque within a compact area, since the microplanetary gear system has an advantage of high reduction ratio per unit volume [1]. However its mechanism is so complicated that relatively few attempts have been made to miniaturize the gear systems [2-3]. Suzumori et al. [2] used the mechanical paradox planetary gear mechanism to drive a robot for 1-in pipes forward or backward. They employed a single motor to drive the gear mechanisms with high reduction ratio. Precise gear fabrication was enabled by micro wire electrical discharge machining (micro-EDM). These parts, however, should be assembled before the drive motor is attached to the gearbox. Takeuchi et. al. [3] also used micro-EDM to fabricate the micro planetary gears. They suggested special cermets or High Carbon Steel for possible materials. While the design can achieve a reduction ratio of 200, the gears should also be assembled and motor driven.To enable the driving of the planetary gear by onchip means, Sandia Ultra- planar Multi-level MEMS Technology (SUMMiT-V) process [4] for planetary gear fabrication is adopted in this study. The SUMMiT-V process is the only foundry process available which utilizes four layers of releasable polysilicon, for a total of five layers (including a ground plane) [5]. Due to this fact, it is frequently used in complicated gear mechanisms being driven by on-chip electrostatic actuators [5].However, in many cases, the microengines may not produce enough torque to drive the desired mechanical load, since their electrostatic comb drives typically only generate a few tens of micronewtons of force. Fortunately, these engines can easily be driven at tens of thousands of revolutions per minutes. This makes it very feasible to trade speed for torque [7].Rodgers et al. [7] proposed two dual level gears with an overall gear reduction ratio of 12:1. Thus six of these modular transmission assemblies can have a 2,985,984:1 reduction ratio at the cost of the huge space.
With the desire for size compactness and at the same time, high reduction ratios, the planetary gear system is presented in this paper. It will be the first planetary gear mechanism using surface micromachining,to the authors knowledge. The principles of operations of the planetary gear mechanism, fabrication, and the expected performance of the planetary gear systems are described in this paper.
Principles of operation
An alternative way of using gears to transmit torque is to make one or more gears, i.e., planetary gears, rotate outside of one gear, i.e. sun gear. Most planetary reduction gears, at conventional size, are used as well-known compact mechanical power transmission systems [1]. The schematic of the planetary gear system employed is shown in Figure
Since SUMMiT V designs are laid out using AutoCAD 2000, the Figure 1 is generated automatically from the lay out masks (Appendix [1]). One unit of the planetary gear system is composed of six gears: one sun gear, a, three planetary gears, b, one fixed ring gear, c, one rotating ring gear, d, and one output gear. The number of teeth for each gear is different from one another except among the planetary gears. An input gear is the sun gear, a, driven by the arm connected to the micro-engine. The rotating ring gear, d, is served as an output gear. For example, if the arm drives the sun gear in the clockwise direction, the planetary gears, b, will rotate counter-clockwise at their own axis and at the same time, those will rotate about the sun gear in clockwise direction resulting in planetary motion. Due to the relative motion between the planetary gears, b, and the fixed ring gear, c, the rotating ring gear, d, will rotate counterclockwise direction. This is so called a 3K mechanical paradox planetary gear [1].
Fabrication procedure and test structures
The features of the SUMMiT V process offer four levels of structural polysilicon layers and an electrical poly level, and also employ traditional integrated circuit processing techniques [4]. The SUMMiT V technology is especially suitable for the gear mechanism. The planetary gear mechanism can be driven by the on-chip engine and thus is another reason of using the SUMMiT V process.
Since the Sandia process is such a well-known procedure [5-7], only brief explanation is presented. Figure 2 represents the cross-sectional view of Figure 1, and also was generated from the AutoCAD layout masks (Appendix [1]). The discontinuity in the cross-section is for the etch holes. The poly1 (gray) is used for the hubs and also patterned to make the fixed ring gear, i.e., c, the sun gear, i.e., a, the rotating ring gear, i.e., c, and the output gear is patterned in the poly2. Since the planetary gear needs to contact both the fixed ring and rotating ring gear, poly2 is added to poly3, where the gear teeth are actually formed. The poly4 layer is used for the arm that drives the sun gear. After the release etch, the planetary gears will fall down so that those will engage both the ring gears.
The figures for the test structures are presented in Appendix [2]. Since the aim of this paper is to suggest a gear reduction mechanism, the planetary gear system is decomposed to several gear units to verify its performance. The first test structure is about the arm, which rotates the sun gear, connected to the on-chip engine. The angular velocity of the arm depends on the engine output speed. The second test structure describes the point at which the sun gear and planetary gears are engaged to the fixed ring gear. Because of the fact that the ring gear is fixed, the planetary gear is just transmitting the torque from the sun gear to the fixed ring gear without planet motion, e.g., rotating its own axis not around the sun gear. When the rotating ring gear is mounted on top of the fixed ring gear, i.e., the third test structure, the planetary gears begin to rotate around the sun gear so that the planet motion are enabled. Therefore, once one output gear is attached to the rotating ring gear, i.e., the final test structure, the whole reduction unit is completed. Dismantling the
planetary gear into three test structures allows the pinpointing of possible errors in the gear system.
Solutions procedure and expected performance
The reduction ratio is defined as the ratio between the angular velocity of the driver gear and that of the driven gear. High reduction ratios indicate trading speed for torque. For example, a 10:1 gear reduction unit could increase torque an order of magnitude. Since the gears in the planetary system should be meshed to one another , the design of gear module should follow a restriction. For example, the number of teeth for the sun gear plus either that of the fixed ring gear or that of the rotating ring gear should be the multiple of the number of planets, P (equation 1). Equation 2, which represent the reduction ratio, should observe the equation 1 first. The N is the number of the teeth for corresponding gear.
Gears, a, b, c, d in the planetary gear system have a tooth module of 4 ìm, which is a comparable size of the current gear reduction units[5], and the tooth numbers are 12, 29, 69, and 72 respectively. Therefore the overall reduction ratio is 162:1 from equation (2). Rodgers et al. [7] reported a 12:1 reduction unit using surface micromachining, which is less than order of magnitude for the gear reduction ratio of the planetary gear system. Although the reduction from Rodgers et al. [7] needs to be occupied in approximately 0.093 mm2, the planetary gear system only utilizes an area of approximately 0.076 mm2. Thus, this planetary reduction design can achieve an order of magnitude higher reduction ratio with less space. Since thereduction module is composed of several reduction units, the advantage of using a planetary gear system is self evident in Figure 3.
Figure 3 shows the comparison of reduction ratios between the proposed planetary gear mechanism i.e. 162n, and the Sandia gear system [7], i.e. 12n, as a function of the number of units, i.e., n. The ordinate is drawn in log scale so that the orders of magnitude differences between two modules are evident. For example, in a module with five numbers of units, the reduction ratio difference between two is approximately six orders of magnitudes. Furthermore, the planetary gear system can save 8500 m2 in such a five unit reduction system.
Conclusion and discussions
The planetary gear reduction system using surface-micromachining, driven by an on-chip engine, first appears in this paper within the authors’ knowledge. The single reduction unit can achieve an order of magnitude higher reduction ratio than that of the previous design. However, due to the surface friction, and the backlash, which is inevitable for the gear manufacturing process, the overall reduction ratio may be less than 162:1 in the real situation. Even though some loss might be expected in the real application, the overall reduction ratio should be order of magnitude higher and the space consumption is less than the previous design [7].
The authors learned a lot about the surfacemicromachining process during the project grant,and realized that a lot of the design needed to be revisited and corrected. This became prevalent when drawing the cross-sectional views of the design. Since the authors utilized the SUMMit V Advanced design Tools Software package and verified the design rules, the planetary gear layout is ready for fabrication. The authors hope that this planetary reduction unit will continue to be updated by successive researchers.
Acknowledgement
The authors would acknowledge that discussions with Prof. Kris Pister, Prof. Arun Majumdar, Ms. Karen Cheung, and Mr. Elliot Hui contributed to this work tremendously.
References
1. Hori, K., and Sato, A., “Micro-planetary reduction gear” Proc. IEEE 2nd Int. Symp. Micro Machine and Human Sciences, pp. 53- 60 (1991).
2. Suzumori, K., Miyagawa, T., Kimura, M., and Hasegawa, Y., “Micro Inspection Robot for 1-in Pipes”, IEEE/ASME Trans. On Mechatronics, Vol. 4., No. 3, pp. 286-292 (1999).
3. Takeuchi, H., Nakamura, K., Shimizu, N., and Shibaike, N., “Optimization of Mechanical Interface for a Practical Micro-Reducer”, Proc. IEEE 13th Int. Symp. Micro Electro Mechanical Systems, pp. 170-175 (2000).
4. Sandia National Laboratories, “Design Rules Design Rules”, Microelectronics
Development Laboratory, Version 0.8, (2000)
5. Krygowask, T. W., Sniegowask, J. J., Rodgers, M. S., Montague, S., and Allen, J. J., “Infrastructure, Technology and Applications of Micro-Electro-Mechanical Systems (MEMS)”, Sensor Expo 1999 (1999).
6. Sniegowski, J. J., Miller, S. L., LaVigne, G. F., Rodgers, M. S., and McWhorter, P. J., “Monolithic Geared-Mechanisms Driven by aPolysilicon Surface-Micromachined On-Chip Electrostatic Microengine”, Solid-State Sensor and Actuator Workshop, pp. 178-182, (1996).
7. Rogers, M. S., Sniegowski, S. S., Miller, S., and LaVigne, G. F., “Designing and Operating Electrostatically Driven Microengines”, Proceedings of the 44th International Instrumentation Symposium, Reno, NV, May 3-7, pp. 56-65 (1998).
Figure 1. The schematic of the planetarygear mechanism generated from SUMMiT V
Figure 2. A schematic cross-section of the planetary gear system
Figure 3. The comparison of reduction ratios as a function of the number of uni
中文翻譯:
采用表面微加工技術制造微型行星齒輪減速器
摘要
這篇文章論述了一種結構緊湊、傳動比高的微型行星齒輪減速機構。這種機構的加工方法采用桑迪亞國家實驗室研發(fā)的過度平面的多極微機電系統(tǒng)技術去除整體結構的冗余部分,而且這種設計原理已經(jīng)得到承認。為了充分利用表面微加工技術,我們在設計加工這種行星減速齒輪時,需要使用安裝在芯片上的微電機。我們將計算這種齒輪預期的減速比,并把它與傳統(tǒng)的鏈傳動和齒輪傳動相比較。在這篇論文中演示的微行星輪占用較少的空間,消耗較少的材料,減速比卻有望達到162:1。這比以前的論文中設計的減速器的傳動比要高的多,簡直是一個神話。
關鍵字:微機電 行星齒輪 減速器 表面微加工 過度平面的多極微機電系統(tǒng)的加工(簡稱為SUMMiT V)
術語:
a.太陽輪
b.行星輪
c.內(nèi)齒圈(固定)
d.內(nèi)齒圈(旋轉(zhuǎn))
n.齒輪系組成單元的數(shù)目
D.節(jié)圓的直徑
N.齒數(shù)
P.行星輪的數(shù)目
.角速度
介紹
在微機電系統(tǒng)中的齒輪結構通常希望用來在微小的體積內(nèi)產(chǎn)生較大的扭矩。但是沒有較大重量的減速器,往往是很難達到這樣的目的。研究發(fā)現(xiàn)擁有微行星齒輪的減速機構能夠在狹小的空間內(nèi)增加扭矩,這好像有點自相矛盾。這是因為微行星齒輪系統(tǒng)能在每單位體積內(nèi)產(chǎn)生更大的傳動比。然而它的結構是如此的復雜,以至于我們很少嘗試將齒輪系統(tǒng)微型化。Suzumori以及他的小組成員曾經(jīng)用類似的行星齒輪結構來驅(qū)動一個機器人,并使它在
直徑為一寸的鋼管里前后移動。他們利用一個馬達來驅(qū)動高傳動比的齒輪機構,通過微電線的放電加工技術能夠?qū)崿F(xiàn)這種齒輪機構的精確加工。但是這些部件應該在裝配驅(qū)動馬達之前安裝在齒輪箱上。Takeuchi 等人也用這種技術制造了微行星齒輪。他們建議用特殊的含陶合金和高碳鋼作為最佳選擇材料。當這種齒輪系統(tǒng)的傳動比達到200的時候,才可以安裝馬達并使之驅(qū)動。為了實現(xiàn)用芯片的方法來實現(xiàn)行星齒輪的驅(qū)動,在研究中我們采用SUMMiT V方法來加工微行星齒輪。SUMMiT V過程是唯一可以實現(xiàn)對于總數(shù)為五層(其中一層為地平面)的硅中釋放四層的鑄造過程由于這個原因,它經(jīng)常被用來通過安裝在芯片上的電子執(zhí)行器來驅(qū)動復雜的齒輪機構。然而, 在許多情形,微電機不可能提供充足的轉(zhuǎn)力矩來驅(qū)動機械負荷,因為它們的靜電梳的典型驅(qū)動只產(chǎn)生幾十微牛頓的力。幸運的是,這些引擎能容易地達到每分鐘幾萬轉(zhuǎn)的速度。這就使將轉(zhuǎn)矩轉(zhuǎn)化為速度變成是可行的。羅杰等人設計了二個傳動比為12:1的雙重的水平齒輪。如此六個這樣的模組的傳輸集合在以占據(jù)極大的空間為代價的前提下可以達到2,985,984:1的傳動比。為了達到結構緊湊,同時達到高傳動比的目的少比, 行星齒輪系統(tǒng)將被作為研究對象。根據(jù)作者的認識,它將會是第一個使用表面微加工原理設計的行星齒輪結構。我們還將闡述行星齒輪的操作規(guī)則,加工過程和希望達到的行星齒輪系統(tǒng)的性能。
操作原則
使用齒輪傳輸轉(zhuǎn)矩的其它可行的方法是將一個或者多個的齒輪,也就是, 行星齒輪,在另一個齒輪的外面旋轉(zhuǎn),也就是太陽輪。按照傳統(tǒng)的尺寸設計的行星齒輪減速器是使整體結構緊湊的常用的傳輸系統(tǒng)。圖1是上述的行星齒輪的示意圖。自從用AutoCAD設計SUMMiT V以來,圖(1)可以通過軟件自動產(chǎn)生(附[1])。一個完整的行星齒輪系統(tǒng)是由六個齒輪組成的: 一個太陽齒輪 a,三個行星齒輪 b,一個固定的內(nèi)齒圈 c,一個旋轉(zhuǎn)的內(nèi)齒圈 d,和一個輸出齒輪 e。除了行星齒輪之外,每個齒輪的齒數(shù)都不相同。 太陽齒輪 a是輸入齒輪,由與微引擎連接的機械手驅(qū)動。內(nèi)齒圈 d,被視為輸出齒輪。舉例來說,如果機械手驅(qū)動太陽輪按照順時針方向方向旋轉(zhuǎn), 那么行星輪 b, 將繞著它們自己的軸按照逆時針方向宣戰(zhàn),同時也將繞著太陽輪按照順時針方向的方向旋轉(zhuǎn),這樣就形成了行星運動。 由于多個行星齒輪b和固定內(nèi)齒圈c之間的運動相似,所以旋轉(zhuǎn)的內(nèi)齒圈d將按照逆時針方向旋轉(zhuǎn)。這也被叫做3K行星齒輪。
加工過程和結構測試
SUMMiT V程序的特征體現(xiàn)了硅層結構、電解聚乙烯, 以及傳統(tǒng)的集成電路處理等技術水平的四個層次。SUMMiT V技術尤其適應于齒輪機構。行星齒輪機構由芯片上的微引擎驅(qū)動,而且這也是采用SUMMiT V技術的另一個理由。
因為桑迪亞程序是一款眾所周知的程序 ,所以我們只簡要的作些解釋。圖2是圖 1的截面視圖,也是由AutoCAD按照附錄[1]設計產(chǎn)生的,其中截面中的不連續(xù)的部分是為了鉆孔而設置的。聚乙烯1(灰色)用來制造輪轂以及固定的內(nèi)齒圈c,太陽齒輪a,旋轉(zhuǎn)的內(nèi)齒圈 c,而輸出齒輪是由聚乙烯2制造的。附錄 [2]是描述測試結構的圖形。因為這篇文章的主旨是介紹一種齒輪減速機構,所以我們將整個行星齒輪系統(tǒng)分解成各個組成部分,以檢測它的性能。第一個測試結構是驅(qū)動太陽齒輪的機械手,如前述,這個機械手是由芯片上的引擎驅(qū)動的,所以機械手的角速度是由引擎的輸出速度決定的。 第二個測試結構描述的是太陽輪和行星輪與固定的內(nèi)齒圈嚙合的點。因為事實上內(nèi)齒圈是固定的, 所以行星輪將太陽輪輸入的轉(zhuǎn)矩傳到固定的內(nèi)齒圈,因此這個過程并沒有經(jīng)過行星運動。也就是說,行星輪只繞它自己的軸轉(zhuǎn)動,而沒有繞太陽輪轉(zhuǎn)動。第三個測試結構是旋轉(zhuǎn)的內(nèi)齒圈,它安裝在固定的內(nèi)齒圈的頂端上,行星輪開始繞太陽輪旋轉(zhuǎn),這樣就可以實現(xiàn)行星傳動。因此,一但輸出齒輪被安裝到旋轉(zhuǎn)的內(nèi)齒圈,也就是最后一個測試結構,整個減速系統(tǒng)完成。將行星齒輪成拆解成三個測試結構的過程中允許齒輪系統(tǒng)存在極微小的誤差。
解決程序和預期的表現(xiàn)
傳動比被定義為驅(qū)動輪和被驅(qū)動輪之間的角速度之比。高傳動比意味著將速度轉(zhuǎn)化為轉(zhuǎn)矩。舉例來說, 一個傳動比為10:1的齒輪可以按照一定的數(shù)量級增加轉(zhuǎn)矩。因為行星輪系的齒輪要保證相互之間嚙合,除了行星齒輪,所以齒輪模數(shù)的設計應該遵從一定得限制。舉例來說,太陽輪的齒數(shù)加上固定的或者旋轉(zhuǎn)的內(nèi)齒圈的齒數(shù)應該等于行星輪齒數(shù)的整數(shù)倍星, P(可以為1)。P代表著傳動比,如果P=2,應該首先觀察P=1的情況 。 N 是對應齒輪的齒數(shù)。
Ns + Nc (Nd ) (1)
(2)
行星輪系的齒輪a、b、c、d的齒型模數(shù)為4 um, 這是可以與現(xiàn)在的齒輪減速器相比較的模數(shù),而齒數(shù)分別是12,29,69,和72。因此根據(jù)等式(2)可知,輪系的傳動比為162:1。根據(jù)羅杰等人的報告,他們設計出傳動比為12:1的減速器,但是要比行星輪系減速器的傳動比小一個數(shù)量級。雖然羅杰等人設計的減速器尺寸大約達到 0.093 mm 到2 mm之間, 但是本文的行星齒輪減速器設計大約可以達到0.076mm到 2mm的范圍. 因此, 行星齒輪減速器設計的傳動比能夠達成更高的數(shù)量級,同時占用更少的空間。因為減速器是由數(shù)個部分組成,所以圖3充分顯示了使用行星齒輪系統(tǒng)的優(yōu)點。
圖3利用數(shù)字的功能來顯示本文提議的行星齒輪機制,也就是, 與桑迪亞齒輪系統(tǒng),也就是,之間的比較。縱坐標以較大的比例單位作圖來顯示兩者之間的區(qū)別是很顯然的。 舉例來說, 在一個由5個部分構成的組件中,兩組之間的區(qū)別大約達到。此外,在這個由五個部分組成的減速器因為采用了行星輪系,面積減少了8500。
結論和討論
我們首先討論了利用表面微加工技術制造的行星齒輪減速系統(tǒng),它是由芯片上的引擎驅(qū)動的。這種減速器系統(tǒng)在傳動比方面比早先設計減速器提高了一個數(shù)量級。然而,由于表面的摩擦和反作用力在齒輪制造加工過程中是不可避免的。所以在實際情形中,減速器的傳動比可能比 162:1 要小。即使在實際情形中一些可能的損失被考慮,減速器的傳動比還是應該比以前的設計提高一個數(shù)量級,而占據(jù)的空間會小很多。作者在設計過程中學習了許多關與微表面加工有關的知識,而且發(fā)現(xiàn)許多設計需要再研究和改正。當畫這些設計得截面視圖時,這些知識已經(jīng)變得很熟悉了。因為我們利用了基于SUMMiT V的先進的設計工具軟件包并確定了設計規(guī)則,行星齒輪的設計為制造加工做好了準備。我們希望這種行星齒輪減速器能夠被研究人員繼續(xù)更新、完善。
收藏