V帶——單級圓柱減速器設(shè)計【F=2300N V=1.5ms D=450mm】【說明書+CAD】
V帶——單級圓柱減速器設(shè)計【F=2300N V=1.5ms D=450mm】【說明書+CAD】,F=2300N V=1.5ms D=450mm,說明書+CAD,V帶——單級圓柱減速器設(shè)計【F=2300N,V=1.5ms,D=450mm】【說明書+CAD】,圓柱,減速器,設(shè)計,ms,mm,妹妹,說明書
機械設(shè)計課程設(shè)計計算說明書
一、傳動方案擬定………………………………………....…….... ….. .2
二、原始數(shù)據(jù)………………………….…………….…………………..2
三、確定電動機的型號…………….……………….………..……….. .2
四、確定傳動裝置得總傳動比及分配……………………………….. .3
五、傳動零件設(shè)計計算………………………….……………………. .4
1、V帶………………………………………………………... .4
2、齒輪………………………………………………………….6
3、減速箱箱體…………………………………………...….. ..11
4、軸及滾動軸承設(shè)計計算……………………………........ ..12
六、鍵聯(lián)接得選擇和強度校核…………………………….……. ….. .16
七、滾動軸承設(shè)計選擇和計算…………………………….……….. . .17
八、減速器密封和潤滑的設(shè)計……………………………………. . …18
九、聯(lián)軸器的設(shè)計計算……………………….……………………. …18
設(shè)計題目:V帶——單級圓柱減速器
設(shè)計者:xxx
學 號:200xxxxxx106
指導教師:xxx
2010年7月12日
帶式運輸機一級齒輪減速器設(shè)計
一、帶式運輸機傳動圖如下:
二、原始數(shù)據(jù)
1.輸送帶工作拉力:F=2300N ;
2.輸送帶工作速度:V=1.5m/s ;
3.滾筒直徑:D=450mm ;
4.滾筒效率:(不包含軸承);
5.采用斜齒圓柱齒輪傳動;
6.允許輸送帶速度誤差為±5%;
7.工作情況:兩班制,連續(xù)單向運轉(zhuǎn),載荷性質(zhì)為輕微沖擊;
8.使用折舊期10年;
9.動力來源:電力,三相交流,電壓380V;
10.制造條件及生產(chǎn)批量:一般機械廠制造,小批量生產(chǎn)。
三、確定電動機的型號
(1) 選擇電動機類型: 選用Y系列三相異步電動機
(2) 選擇電動機功率
運輸機主軸上所需要的功率:
P=FV/1000=2300×1.5/1000=3.45KW
傳動裝置的總效率:
,,,,, 分別是:V帶傳動,齒輪傳動(閉式,精度等級為7),滾動軸承(圓錐滾子軸承一對),聯(lián)軸器(彈性聯(lián)軸器),滾筒軸承效率,運輸帶的效率。查《課程設(shè)計》表2-3,
?。?
所以:
電動機所需功率:Pd=KPw/η=1×3.45/0.8588=4.017kW 式中,取載荷系數(shù) =1
電動機的額定功率
(3)選擇電動機的轉(zhuǎn)速
滾筒的轉(zhuǎn)速: n筒=60×1000V/πD=60×1000×1.50/π×450r/min=63.7r/min
電動機的合理同步轉(zhuǎn)速: 取V帶傳動比范圍(表2-2)=2~4;單級齒輪減速器傳動比=3~6.則總傳動比合理時范圍為=6~24。故電動機轉(zhuǎn)速的可選范圍為n=(6~24)×63.7r/min=382.2~1528.7r/min
符合這一范圍的同步轉(zhuǎn)速有1000和1500r/min。
根據(jù)容量和轉(zhuǎn)速,由有關(guān)手冊查出有三種適用的電動機型號:因此有三種傳動比方案:如指導書P15頁第一表。綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,選n=1500r/min?
確定電動機型號:
根據(jù)以上選用的電動機類型,所需的額定功率及同步轉(zhuǎn)速,選定電動機型號為Y132S-4。
查表16-1得 電動機得型號和主要數(shù)據(jù)如下(同步轉(zhuǎn)速符合)
電動機型號
額定功率(kW)
同步轉(zhuǎn)速(r/min)
滿載轉(zhuǎn)速nm
(r/min)
堵載轉(zhuǎn)矩
額定轉(zhuǎn)矩
最大轉(zhuǎn)矩
額定轉(zhuǎn)矩
Y132S-4
4
1500
1440
2.2
2.3
四、確定傳動裝置總傳動比及分配
傳動裝置總傳動比 : i =nm/n=1440/63.7=22.61
分配各級傳動比
初取齒輪
∵
∴
(1)計算各軸的輸入功率
電動機軸: P=Pd=4kW
軸Ⅰ(減速器高速軸
軸Ⅱ(減速器低速軸)
(2) 計算各軸得轉(zhuǎn)速
電動機軸 nI =nm=1440 r/min
軸Ⅰ
軸Ⅱ
(3)計算各軸得轉(zhuǎn)矩
電動機軸
軸Ⅰ
軸Ⅱ
上述數(shù)據(jù)制表如下:
參數(shù)
軸名
輸入功率
()
轉(zhuǎn)速
()
輸入轉(zhuǎn)矩
()
傳動比
效率
電動機軸
4
1440
26.53
3.9
0.96
軸Ⅰ(減速器高速軸)
3.84
369
99.38
5.9
0.99
軸Ⅱ(減速器低速軸)
3.73
63
565.42
五、傳動零件得設(shè)計計算
1. 普通V帶傳動得設(shè)計計算
① 確定計算功率
則: ,式中工作情況系數(shù)取=1.2
② 根據(jù)計算功率與小帶輪的轉(zhuǎn)速,查《機械設(shè)計基礎(chǔ)》圖10-10,選擇A型V帶。
③ 確定帶輪的基準直徑
取小帶輪直徑,大帶輪的直徑
根據(jù)國標:GB/T 13575.1-1992 取大帶輪的直徑
④ 驗證帶速 ,在之間。故帶的速度合適。
⑤確定V帶的基準直徑和傳動中心距
初選傳動中心距范圍為:,取
V帶的基準長度:
查《機械設(shè)計基礎(chǔ)》表10-2,選取帶的基準直徑長度
實際中心距:
⑥ 驗算主動輪的最小包角
故主動輪上的包角合適。
⑦ 計算V帶的根數(shù)z
由,,
查《機械設(shè)計基礎(chǔ)》表10-5,得,由,查表10-6,得,
查表10-7,得,查表10-2,得
, 取根。
⑧ 計算V帶的合適初拉力
查《機械設(shè)計基礎(chǔ)》表10-1,取
得
⑨ 計算作用在軸上的載荷
⑩ 帶輪的結(jié)構(gòu)設(shè)計
(單位)mm
帶輪
尺寸
小帶輪
大帶輪
槽型
A
A
基準寬度
11
11
基準線上槽深
2.75
2.75
基準線下槽深
8.7
8.7
槽間距
150.3
150.3
槽邊距
9
9
輪緣厚
6
6
外徑
內(nèi)徑
30
30
帶輪寬度
帶輪結(jié)構(gòu)
實心式
輪輻式
V帶輪采用鑄鐵HT150或HT200制造,其允許的最大圓周速度為25m/s.
2.齒輪傳動設(shè)計計算
(1)擇齒輪類型,材料,精度,及參數(shù)
① 選用斜齒圓柱齒輪傳動(外嚙合)
② 選擇齒輪材料;小齒輪材料都取為45號鋼,調(diào)質(zhì), (考慮到齒輪使用壽命較長 (GB699-1988);大齒輪材料取為:ZG310-570,調(diào)質(zhì),
③選取齒輪為7級的精度(GB 10095-1998)
④ 初選螺旋角
⑤ 選小齒輪的齒數(shù);大齒輪的齒數(shù)
(2)按齒面接觸疲勞強度設(shè)計
1選初選載荷系數(shù)Kt=1.6
2計算小齒輪傳遞的轉(zhuǎn)矩
3 選取齒寬系數(shù)
4有表10—6查得材料的彈性影響系數(shù),由圖10—30選取區(qū)域系數(shù)。
5按齒面硬度查得小齒輪的接觸疲勞強度極限:大齒輪的接觸疲勞強度極限
6 計算應(yīng)力循環(huán)次數(shù)
7 接觸疲勞壽命系數(shù)
8 計算接觸疲勞許用應(yīng)力
取失效概率為1%,安全系數(shù)S=1.則
9 計算小齒輪分度圓直徑
查表的
=55.43mm
10 計算圓周速度
11 計算齒寬b及模數(shù)
12 計算重合度
13 計算載荷系數(shù)k
已知使用系數(shù),根據(jù)v=1.1m/s,7級精度,查得動載系數(shù)=1.07;=1.42,=1.32,。
14 按實際的載荷系數(shù)校正所得的分度圓直徑
15 計算模數(shù)
(3)按齒根彎曲強度設(shè)計
1 確定公式內(nèi)的各計算數(shù)值
查得小齒輪的彎曲疲勞強度極限;大齒輪的彎曲疲勞強度極限;彎曲疲勞壽命系數(shù)
2 計算彎曲疲勞許用應(yīng)力
取彎曲疲勞安全系數(shù)S=1.4,
3計算載荷系數(shù)
4 根據(jù)縱向重合度=1.348,查得螺旋角影響系數(shù)
5 計算當量齒數(shù)
6 查取齒形系數(shù)
7 查取應(yīng)力校正系數(shù)
8 計算大、小齒輪的并加以比較
大齒輪的數(shù)值大
9 設(shè)計計算:
對比計算結(jié)果,由于齒面接觸疲勞強度計算的法面模數(shù)大于齒根彎曲疲勞強度計算的法面模數(shù),取=2.5,以滿足彎曲強度。但為了同時滿足接觸疲勞強度,需按接觸疲勞強度算得的分度圓直徑=58.28來計算應(yīng)有的齒數(shù)。于是由
取,則,取
(4)幾何尺寸計算
1 計算中心距
圓整后后中心距為205mm
2 按圓整后的中心距修正螺旋角
因改變不多,故參數(shù)、、等不必修正。
3 計算大、小齒輪的分度圓直徑
4 計算齒輪寬度
mm
圓整后取
② 齒輪傳動的幾何尺寸,制表如下:(詳細見零件圖)
名稱
代號
計算公式
結(jié)果
小齒輪
大齒輪
中心距
205mm
傳動比
5.9
法面模數(shù)
設(shè)計和校核得出
2.5
端面模數(shù)
2.58
法面壓力角
略
螺旋角
一般為
全齒高
4.5mm
齒數(shù)
Z
略
23
136
分度圓直徑
查表7-6
59.3mm
350.9mm
齒頂圓直徑
略
63.3mm
354.9mm
齒根圓直徑
df
查表7-6
54.3mm
345.9mm
齒輪寬
b
查表7-6
65mm
60mm
螺旋角方向
查表7-6
左旋
右旋
3、減速器鑄造箱體的主要結(jié)構(gòu)尺寸設(shè)計:
查《機械設(shè)計課程設(shè)計手冊》表11-1及結(jié)果列于下表:
名稱
符號
尺寸大小
結(jié)果(mm)
機座壁厚
一級
二級
8
機蓋壁厚
一級
二級
8
機座凸圓厚度
12
機蓋凸圓厚度
12
機座底凸圓厚度
20
地腳螺釘直徑
0.036a+12
20
地腳螺釘數(shù)目
n
4
軸承旁聯(lián)接螺栓直徑
15
機蓋與機座聯(lián)接螺栓直徑
10
聯(lián)接螺栓的間距
150~200
150
軸承端蓋螺釘直徑
10
窺視孔蓋螺釘直徑
8
定位銷直徑
8
至外箱壁距離
略
至凸緣邊緣距離
略
軸承旁凸臺半徑
凸臺高度
略
外箱壁至軸承座端面距離
鑄造過度尺寸
略
大齒輪頂圓與內(nèi)箱壁間距
10
齒輪端面與內(nèi)箱壁距離
10
箱蓋、箱座肋厚
6.8,6.8
軸承端蓋外徑
軸承旁聯(lián)接螺栓距離
4、軸的設(shè)計計算
1、輸入軸的設(shè)計
求作用在齒輪上的力:
因已知小齒輪的分度圓直徑為:
而
(1)按扭轉(zhuǎn)強度估算軸的最小直徑
選用45號鋼調(diào)質(zhì),硬度217~255HBS軸的輸入功率為,轉(zhuǎn)速為r/min
取A=112,于是得:
(2)確定軸各段直徑和長度
1從大帶輪開始右起第一段,由于帶輪與軸通過鍵聯(lián)接,則軸應(yīng)該增加5%,取D1=Φ30mm,又帶輪的寬度 。則第一段長度取
2右起第二段直徑取D2=Φ38mm根據(jù)軸承端蓋的裝拆以及對軸承添加潤滑脂的要求和箱體的厚度,取端蓋的外端面與帶輪的左端面間的距離為30mm,則取第二段的長度L2=70mm
3右起第三段,該段裝有滾動軸承,選用深溝球軸承,則軸承有徑向力,而軸向力為零,選用6208型軸承,其尺寸為d×D×B=40×80×18,那么該段的直徑為D3=Φ40mm,長度為L3=18mm
4右起第四段,為滾動軸承的定位軸肩,其直徑應(yīng)小于滾動軸承的內(nèi)圈外徑,取D4=Φ48mm,長度取L4= 10mm
5右起第五段,該段為齒輪軸段,由于齒輪的齒頂圓直徑為Φ63.3mm,分度圓直徑為Φ59.3mm,齒輪的寬度為65mm,則,此段的直徑為D5=Φ44mm,長度為L5=63mm
6右起第六段,為滾動軸承的定位軸肩,其直徑應(yīng)小于滾動軸承的內(nèi)圈外徑,取D6=48mm長度取L6= 10mm
7右起第七段,該段為滾動軸承安裝出處,取軸徑為D7=Φ40mm,長度L7=18mm
(3)求齒輪上作用力的大小、方向
1小齒輪分度圓直徑:d1=59.3mm
2作用在齒輪上的轉(zhuǎn)矩為:T1 =99382N·mm
3求圓周力:Ft
4求徑向力Fr
(4)軸長支反力
根據(jù)軸承支反力的作用點以及軸承和齒輪在軸上的安裝位置,建立力學模型。水平面的支反力:
垂直面的支反力:由于選用深溝球軸承則Fa=0
那么
(5)畫彎矩圖
第四段剖面C處的彎矩:
面的彎矩:
面的彎矩:
彎矩:
(7)畫轉(zhuǎn)矩圖: T= Ft×d1/2=99.39N·m
(8)畫當量彎矩圖
因為是單向回轉(zhuǎn),轉(zhuǎn)矩為脈動循環(huán),α=0.6
可得右起第四段剖面C處的當量彎矩:
(9)判斷危險截面并驗算強度
1右起第四段剖面C處當量彎矩最大,而其直徑與相鄰段相差不大,所以剖面C為危險截面。
已知由《設(shè)計基礎(chǔ)》表13-1有:
[σ-1]=60Mpa 則:
2右起第一段D處雖僅受轉(zhuǎn)矩但其直徑較小,故該面也為危險截面:
所以確定的尺寸是安全的.
2、 輸出軸的設(shè)計計算
(1)按扭轉(zhuǎn)強度估算軸的直徑
選用45號鋼調(diào)質(zhì),硬度217~255HBS
軸的輸入功率為=3.73Kw,轉(zhuǎn)速為=63 r/min
據(jù)《設(shè)計基礎(chǔ)》P205(13-2)式,并查表13-2,取
d≥
(2)確定軸各段直徑和長度
1從聯(lián)軸器開始右起第一段,由于聯(lián)軸器與軸通過鍵聯(lián)接,則軸應(yīng)該增加5%,取Φ45mm,根據(jù)計算轉(zhuǎn)矩,查標準GB/T 5014—2003,選用LX3型彈性柱銷聯(lián)軸器,半聯(lián)軸器長度為L=84mm,軸段長L1=82mm
2右起第二段,考慮聯(lián)軸器的軸向定位要求,該段的直徑取Φ52mm,根據(jù)軸承端蓋的裝拆及便于對軸承添加潤滑脂的要求,取端蓋的外端面與半聯(lián)軸器左端面的距離為30mm,故取該段長為L2=74mm
3 右起第三段,該段裝有滾動軸承,選用深溝球軸承,則軸承有徑向力,而軸向力為零,選用6211型軸承,其尺寸為d×D×B=55×100×21,那么該段的直徑為Φ55mm,長度為L3=36
4右起第四段,該段裝有齒輪,并且齒輪與軸用鍵聯(lián)接,直徑要增加5%,大齒輪的分度圓直徑為350.9mm,則第四段的直徑取Φ60mm,齒輪寬為b=60mm,為了保證定位的可靠性,取軸段長度為L4=58mm
5右起第五段,考慮齒輪的軸向定位,定位軸肩,取軸肩的直徑為D5=Φ66mm ,長度為L5=10mm
6右起第六段,考慮定位軸肩,取軸肩直徑為D6=61mm,長度為L6=5mm.
7右起第七段,該段為滾動軸承安裝出處,取軸徑為D7=Φ55mm,長度L7=21mm
(3)求齒輪上作用力的大小、方向
1大齒輪分度圓直徑: =350.9mm
2作用在齒輪上的轉(zhuǎn)矩為: T2 =5.65×105N·mm
3求圓周力:Ft
Ft=2T2/d2=2×5.65×105/350.9=3220.29N
4求徑向力Fr
Fr=Ft·tanα=3220.29×N=813.66N
(4)軸長支反力
根據(jù)軸承支反力的作用點以及軸承和齒輪在軸上的安裝位置,建立力學模型。
水平面的支反力:
垂直面的支反力:由于選用深溝球軸承則Fa=0
那么
(5)畫彎矩圖
右起第四段剖面C處的彎矩:
水平面的彎矩:
垂直面的彎矩:
合成彎矩:
(6)畫轉(zhuǎn)矩圖: T= Ft×d2/2×1000=565 N·m
(7)畫當量彎矩圖
因為是單向回轉(zhuǎn),轉(zhuǎn)矩為脈動循環(huán),α=0.6
可得右起第四段剖面C處的當量彎矩:
(8)判斷危險截面并驗算強度
1右起第四段剖面C處當量彎矩最大,而其直徑與相鄰段相差不大,所以剖面C為危險截面。
已知 ,由《設(shè)計基礎(chǔ)》表13-1有:
[σ-1]=60Mpa 則:
2右起第一段D處雖僅受轉(zhuǎn)矩但其直徑較小,故該面也為危險截面:
所以確定的尺寸是安全的 。
六、鍵聯(lián)接設(shè)計
1.輸入軸與大帶輪聯(lián)接采用平鍵聯(lián)接
此段軸徑d1=30mm,L1=65mm,查手冊得選用C型平鍵,得:A鍵 8×7 GB1096-79 L=L1-b=65-8=57mm,=26.53N·m ,h=7mm。根據(jù)σp =4 ·T/(d·h·L)式得
σp =4 ·T/(d·h·L)
=4×26.53×1000/(30×7×57)
=8.87Mpa < [σR] (110Mpa)
2.輸入軸與齒輪1聯(lián)接采用平鍵聯(lián)接軸徑d2=44mm L2=63mm =99.38Nm,查手冊P53選A型平鍵,得B鍵12×8 GB1096-79。L=L2-b=63-12=51mm,h=8mm。
σp =4 ·/(d·h·l)
=4×99.38×1000/(44×8×51)
= 22.143Mpa < [σp] (110Mpa)
3.輸出軸與齒輪2聯(lián)接用平鍵聯(lián)接,軸徑d3=60mm,L3=58mm,=565.42N·m。查手冊P53選用A型平鍵,得B鍵18×11 GB1096-79 ,L=L3-b=60-18=42mm, h=11mm得
σp =4·/(d·h·l)
=4×565.42×1000/(60×11×42)
=81.59Mpa < [σp] (110Mpa)
4.輸出軸與聯(lián)軸器聯(lián)接用平鍵聯(lián)接,d4 =45mm,L4=82mm,=565.42N·m。查手冊P53選用A型平鍵,得B鍵12×8,12×8 GB1096-79 ,L=L4-b=82-12=70mm,h=8mm.
σp =4 ·/(d·h·l)
=4×565.42×1000/(45×8×70)
= 89.749Mpa < [σp] (110Mpa)
七、滾動軸承設(shè)計根據(jù)條件:
軸承預計壽命10×360×8×2=57600小時
1.輸入軸的軸承設(shè)計計算
(1)初步計算當量動載荷P
因該軸承在此工作條件下只受到Fr徑向力作用,所以P=Fr=1258N
(2)求軸承應(yīng)有的徑向基本額定載荷值,由于是球軸承=3
(3)選擇軸承型號
查《設(shè)計手冊》表6-1,選擇6208軸承 Cr=29.5KN由式11-3有
∴預期壽命足夠
∴此軸承合格
2.輸出軸的軸承設(shè)計計算
(1)初步計算當量動載荷P
因該軸承在此工作條件下只受到Fr徑向力作用,所以P=Fr=813.66N
(2)求軸承應(yīng)有的徑向基本額定載荷值,球軸承=3
(3)選擇軸承型號
查設(shè)計基礎(chǔ)表11-5,選擇6211軸承 Cr=43.2KN由設(shè)計基礎(chǔ)式11-3有
∴預期壽命足夠
∴此軸承合格
八、密封和潤滑的設(shè)計
1.密封
由于選用的電動機為低速,常溫,常壓的電動機則可以選用毛氈密封。毛氈密封是在殼體圈內(nèi)填以毛氈圈以堵塞泄漏間隙,達到密封的目的。毛氈具有天然彈性,呈松孔海綿狀,可儲存潤滑油和遮擋灰塵。軸旋轉(zhuǎn)時,毛氈又可以將潤滑油自行刮下反復自行潤滑。
2.潤滑
(1)對于齒輪來說,由于傳動件的的圓周速度v< 12m/s,采用浸油潤滑,因此機體內(nèi)需要有足夠的潤滑油,用以潤滑和散熱。同時為了避免油攪動時泛起沉渣,齒頂?shù)接统氐酌娴木嚯xH不應(yīng)小于30~50mm。對于單級減速器,浸油深度為一個齒全高,這樣就可以決定所需油量,單級傳動,每傳遞1KW需油量V0=0.35~0.7m3。
(2)對于滾動軸承來說,由于傳動件的速度不高,且難以經(jīng)常供油,所以選用潤滑脂潤滑。這樣不僅密封簡單,不宜流失,同時也能形成將滑動表面完全分開的一層薄膜。
九、聯(lián)軸器的設(shè)計
(1)類型選擇
由于兩軸相對位移很小,運轉(zhuǎn)平穩(wěn),且結(jié)構(gòu)簡單,對緩沖要求不高,故選用彈性柱銷聯(lián)軸器。
(2)載荷計算
計算轉(zhuǎn)矩TC=KA×TⅡ=1.3×565.42=735.05N·m,其中KA為工況系數(shù),由設(shè)計基礎(chǔ)表14-1得KA=1.3
(3)型號選擇
根據(jù)TC,軸徑d,軸的轉(zhuǎn)速n, 查標準GB/T 5014—2003,選用LX2型彈性柱銷聯(lián),其額定轉(zhuǎn)矩[T]=1250Nm, 許用轉(zhuǎn)速[n]=6300r/min ,故符合要求。
19
Introduction to the common speed reducer
Device overview:Reducer is the prime mover and work machine independent closed between the transmission device, used to reduce speed and increase torque, in order to meet the job needs, also used for growth in some occasions, known as the accelerator.
When choosing reducer should be according to the selection of working machine conditions, technical parameters, the performance of the engine, the factors such as economy, comparing the gabarite of different types and varieties of reducer, transmission efficiency and carrying capacity, quality, price, etc., choose the most suitable speed reducer.
Reducer is a relatively sophisticated machinery, the use of its purpose is to reduce rotation speed, increase torque.
Structural characteristics of
Reducer is mainly composed of transmission parts (gear or worm), shaft, bearing, box and its accessories. Its basic structure has three parts:
1.gear, shaft and bearing combination
Pinion and shaft made of an organic whole, gear shaft, this structure is used in the gear shaft and the diameter of the diameter of the weather related, if the diameter of the shaft is d, the gear tooth root circle diameter for df, when df - d 6 ~ 7 mn or less, this structure should be adopted. And when df - d > 6 ~ 7 mn, separated with gear and shaft for the two parts of the structure, such as low speed shaft and large gear. The gear and shaft circumferential fixed flat linkage, shaft parts shaft shoulder, shaft sleeve and bearing cover is used as the axial fixation. Two shaft adopts the deep groove ball bearings. This combination, the less used to bear radial load and axial load. When the axial load is larger, should adopt angular contact ball bearing, taper roller bearing and deep groove ball bearing and thrust bearing of composite structures. Bearing is the use of the gear rotates splashing through the thin oil, lubrication. Box medium oil pool of the lubricating oil, the rotation gear splash splash into the lid on the inner wall of the inner flow box side groove to points, through the oil flow into the bearing. Nu when oiled gear circumferential speed 2 m/s, or less grease lubricated bearings should be adopted, in order to avoid possible wash it splashing through the thin oil lubricating grease, the oil retaining ring can be used to separate it. To prevent loss of lubricating oil and dust into the trunk, between bearing end cover and outrigger shaft equipped with sealing element.
2. body
Enclosure is the important part in the reducer parts. It is the base of the transmission parts, should have sufficient strength and rigidity.
Cabinet is usually made of grey cast iron, for overloading or cast steel casing impact load reducer can also be used. Monomer production reducer, in order to simplify the process, to reduce the cost, can use steel plate welded box.
Gray cast iron has good casting and vibration reduction performance. To facilitate the shafting parts installation and disassembly, made along the axis line horizontal split-casing box body. On the box cover and the lower box body with a bolt connection into a whole. The connecting bolt of the bearing should be close to the bearing hole, and the bearing seat at the side of convex set, should have enough supporting material surface, in order to place the connecting bolt, and to ensure that the wrench to tighten bolts need to space. In order to ensure the body has enough stiffness, plus support rib near the bearing hole. In order to ensure the stability and reduce as much as possible on the basis of speed reducer in the mechanical processing of base plane of the area, the case base is generally not used the complete plane.
3. reducer fittings
In order to guarantee the normal work of the speed reducer, in addition to combination of gear, shaft, bearing and the structure design of box body is to give enough attention, also should be considered as reducer oil lubricating oil pool, oil discharge, check the oil level height, processing, maintenance when assembling and disassembling of the box cover and the box of accurate positioning, loading auxiliary parts and components, such as reasonable selection and design.
1) inspection to check the meshing condition of transmission parts, and to infuse lubricating oil contents, should be set in the appropriate location of the box body inspection hole. Inspection hole is located in the top lid can be observed directly on the gear mesh part. Normally, inspection hole of cover plate on the box cover with screws.
2) the ventilator speed reducer is working, the casing temperature, gas expansion pressure, to make overall thermal air free to discharge, to maintain pressure balance inside and outside, not make the lubricating oil or shaft extension along the points box surface seal leakage cracks and other, usually on the top of the box body installed ventilator.
3) bearing cover for the fixed shaft parts of axial position and carry axial load, the bearing hole on both ends with bearing cover closed. Bearing bore of flange type and embedded two kinds. Use hex bolt fixed on the box body, bearing cover is overhang shaft hole, which is equipped with sealing device. Flange type bearing cover has the advantage of tear open outfit, easy to adjust the bearing, but compared with the embedded bearing cover, the number of parts is bigger, the size is bigger, appearance is not smooth.
4) positioning pin every time in order to ensure the container cover, remained bearing hole processing accuracy, should be in before finishing the bearing hole, in the box cover and the box seats on the connecting flange of the locating pin. Placed vertically on both sides of the enclosure on the connecting flange, symmetrical body should be symmetrical arrangement, in order to avoid mistake.
5) oil level indicator to check the oil in the oil pool reducer hight, often maintain oil pool with just the right amount of oil, usually in the box body is convenient for observation, the oil level is relatively stable, installing the oil level indicator.
6) oil drain plug oil change, dirty oil and cleaner emissions, should be in the box seat, at the bottom of the oil pool of the lowest opening oil drain hole location, usually with a screw oil drain plug, oil drain plug and body joint face between gasket shall be leak proof.
7) seal screw for strengthening qi box, usually during assembly on housing subdivision surface coated with sodium silicate or sealant, when remove often due to the cementation close is difficult to open. So often the appropriate placement of the box cover connecting flange, work out ~ 2 screw holes, screwing in enlightening the box with a cylindrical side or flat side box screws. Gyration rev box screws can will cover on top. Small reducer also don't have rev. Cases of screw, when the lid with a screwdriver to pry out of the box cover, and the box can be the same as the size of the screw to the connecting bolt at the flange.
Main load
Machine with reducer connection work load condition is more complex, has much effect on the speed reducer, is one of the important factors, selection and calculation speed reducer the load state of the work machine (motivation) is the load condition, usually divided into three categories:
(1) - even load;
(2) - medium impact load;
(3) - strong impact load.
Design program
A, the original design information and data
1. the type of prime mover, specifications, speed, power (or torque), the startup characteristic, short-term overload capacity, the moment of inertia, etc.
2. the type of machine, specifications, use, speed, power (or torque). Working system: the constant load or changing load and variable load load diagram; Rev., braking and short-time overload torque, start frequency; Shock and vibration levels; Direction of rotation, etc.
3.the prime mover for machine and connection way of the reducer, shaft and if there is a radial force and axial force.
4.installation type (reducer and prime mover, the relative position of working machine, vertical and horizontal).
5.transmission ratio and its error is allowed.
6.the size and weight requirements.
7.to the degree of service life, safety and reliability requirements.
8.environmental temperature, dust concentration, air velocity and environmental conditions such as ph value; (if there is a circulating lubrication and cooling conditions, lubrication station) and the limitation on the vibration and noise.
9.to the requirements of operation and control.
10. the source of material, blank, standard parts and inventory.
11.factory manufacturing capabilities.
12.on volume, cost and price requirements.
13, the delivery date.
The article in the first four is a prerequisite, other aspects according to conventional design, such as the design life is generally! "Years. Used for important occasions, reliability should be higher.
Second, select the type of gear reducer and installation type
Three, set at the beginning of each process methods and parameters
Selected performance level, set at the beginning of the main parts of the gear and the material, heat treatment, finishing methods, lubrication, and lubrication oil.
Fourth, determine the transmission series
According to the total transmission ratio, to determine the transmission series and all levels of the transmission ratio.
Five, the initial geometry parameters
Early calculate gear transmission center distance (or pitch diameter), modulus and other geometric parameters.
Six, the overall design scheme
Determine the structure of the reducer, shaft size, span and the bearing model, etc.
Seven, check
Check the strength of the gear, shaft, key load, calculation of bearing life.
Eight, lubrication cooling calculation
To determine the speed reducer and accessory
Ten, gear carburized depth is determined
When necessary for tooth form and tooth to fix quantity calculation process data.
Eleven, drawing construction drawing
In the design should implement national and industry related standards.
Using the classification
1. reducer in use can be divided into two categories, general reducer and special reducer, design, manufacture and use of the two characteristics of each are not identical. 70-80 - s of the 20th century, reducer technology has made great development in the world, and closely integrated with the development of new technology revolution. The main types: gear reducer; Worm gear reducer; Gear - worm reducer; Planetary gear reducer.
2.general reducer has a helical gear reducer (including parallel shaft helical gear reducer, worm gear reducer, bevel gear reducer, etc.), planetary gear reducer, cycloid pin wheel reducer, the worm gear and worm reducer, planetary friction type mechanical stepless variable speed machine, and so on.
1) cylindrical gear reducer
Single stage level 2, level 2, level 2 above. Decorate a form: expansion, shunt type, coaxial type.
2) cone gear reducer
Used for the input shaft and output shaft position into the intersection.
3) worm gear reducer
Is mainly used for transmission ratio > 10 occasions, I drive more compact structure. Its defect is low efficiency. Wide application of Archimedes worm gear reducer.
4) gear - worm reducer
If gear drive level at high speed, the structure is compact;
If worm transmission at high speed, high efficiency.
5) planetary gear reducer
With a range of high transmission efficiency, transmission ratio, transmission power is 12 w ~ 50000 kw, small volume and weight
3.common types of reducer
1) the main characteristics of worm gear and worm reducer is a reverse self-locking function, can have a large reduction ratio, the input shaft and output shaft is not in the same axis, is not in the same plane. But generally larger, transmission efficiency is not high, the accuracy is not high.
2) harmonic reducer harmonic drive is to use the elastic deformation of flexible components controlled to transfer movement and power, small size, high precision, but the disadvantage is that soft wheel life is limited, don't impact resistance, rigidity compared with metal parts. Input speed cannot be too high.
3) planetary gear reducer, its advantage is more compact in structure, return clearance is small, high precision, long service life, rated output torque can do a lot of. But the price a little expensive. Reducer: in short, generally after the machine power in design and manufacture, the rated power will not change, at this time, the greater the speed, the smaller is the torque (or torque); Speed is smaller, the greater the torque.
The transmission ratio distribution principle
1. to make the bearing capacity of transmission at all levels are equal;
2. make all levels of transmission gear oil immersion depth is roughly similar in;
3.minimize the reducer for the shape of the size or weight, etc
Model selection
As far as possible choose close to ideal reduction ratio:
Reduction ratio = / servo motor speed reducer output shaft speed
Torque calculation:
For the life of the reducer, torque calculation is very important, and should pay attention to the maximum torque value of the acceleration (TP), which is super
Maximum load torque of reducer.
Apply power is usually the servo on market model for power, the applicability of the speed reducer is very high, can remain above 1.2 coefficient of work, but in use can also with their own needs to decide:
There are two main points:
A. choose servo motor output maximum diameter of axle diameter of axle is not greater than form.
B. If the computed torque, rotational speed can meet the normal operation, but in the net output servo have insufficient phenomenon, we can in the motor drive, do current limit control, or on the mechanical shaft torque protection, it is very necessary.
Installation method
The correct installation, use and maintenance of the reducer, it is an important link in ensure the normal operation of machinery and equipment. When you install reducer, therefore, please be sure to use related matters in strict accordance with the following installation, assembly and use seriously.
The first step is to install before confirm the motor and reducer are intact, and strict inspection of motor and reducer connected each part size matches, here is the positioning convex table of the machine, input shaft and gear reducer groove size and tolerance, etc.
The second step is to unscrew the gear reducer dustproof holes on flange lateral screw, adjust the clamping ring dustproof holes and side holes to make it align with each other, and insert the socket head screw. After taking the motor shaft key.
The third step is to connect the motor and the reducer nature. Connection must be to ensure the output gear reducer input shaft and motor shaft concentricity is consistent, and the outer flange is parallel. Such as concentricity is inconsistent, can lead to broken motor shaft or reducer gear wear and tear.
Check the maintenance
Different lubricant mixed ban each other. Oil level screw, oil drain plug and the location of the ventilator is determined by the installation position. Their relative position refer to the installation drawing to determine that speed reducer.
One, the oil level check
Cut off the power supply, prevent to get an electric shock! Waiting for reducer cooling!
Remove the oil level screw check filled with oil.
Install the oil level screw.
Second, the check of oil
Cut off the power supply, prevent to get an electric shock! Waiting for reducer cooling!
Open the oil plug, pick up sample.
Check the oil viscosity index
- if oil significantly turbidity, it is recommended that the replacement as soon as possible.
To bring oil level screw speed reducer
- check the oil level, whether qualified
- the installation of oil level screw
3.the oil replacement
After cooling oil viscosity increases with difficulty, reducer should be under the running temperature oil change.
Cut off the power supply, prevent to get an electric shock! Waiting for reducer cooled down no burning danger!
Note: when an oil change speed reducer should still keep warm.
Under the oil drain screw one by oil pan.
Open the oil level screw, ventilator and oil drain plug.
All the oil out.
Install drain plug.
Injection with brand new oil.
Oil shall conform to the installation location.
Check the oil level in the oil level screw.
Tighten the oil level screw and ventilator.
Failure to solve
Speed reducer leakage oil cause analysis and solution
Analysis of the causes
1.the pressure inside the tank
In closed reducer, each pair of gears meshing friction will emit heat, according to the Boyle trails by specific law, as the lengthen of running time, the deceleration box temperature gradually raised, and the reduction volume inside the case, so the pressure increase, in the case of lubricating oil splash, sprinkle on the inner wall of the deceleration box. Because the permeability of oil is strong, the overall pressure, which a seal is lax and the oil bleeding out from where.
2.the structure of the speed reducer design is not reasonable cause oil leakage
Such as design of reducer without ventilation hood, pressure reducer can not be achieved, in the pressure more and more high, oil leakage occurs.
3.a(chǎn)mount to much
Reducer in the process of operation, oil pool was badly agitation, lubricating oil splash around in the machine, if the amount is overmuch, make a lot of the place such as lubricating oil accumulation in the shaft seal, joint surface and lead to leakage.
4.improper maintenance technology
In equipment maintenance, due to the combined surface dirt removal is not complete, or sealant improper selection, seal, not timely replacement of seals, etc way can also cause oil leakage.
Treatment scheme
Governance using polymer composite materials to repair speed reducer leakage oil, polymer composite materials based on polymer, metal or ceramic powder, fiber and other materials for, under the action of curing agent, curing catalyst of composite materials. All kinds of material in performance from each other each other, to produce synergistic effect, the comprehensive performance is better than the original ingredients of composite materials. Have extremely strong sticky relay, mechanical properties, and chemical corrosion resistance and other performance, and therefore is widely used in metal equipment, mechanical wear, scratches, pits, cracks, leakage, repair such as casting sand holes, and chemistry of chemical storage tank, reaction tank, pipe anti-corrosion protection and restoration. For reducer static seal leakage point can use the ka wah polymer composite materials and technology field leakage of governance, without disassembly, polymer composite materials in the leakage of external governance, save time and effort, the effect is immediate, the product has excellent adhesion, oil resistance, and 350% of the tensile strength, overcome the impact of reducer vibration, well solved for many years for the enterprise is unable to solve the problem. If reducer running in static seal leak, the oil level of emergency repairing adhesive available surface engineering technologies NianDu, so as to achieve the aim of eliminate oil leakage.
Development trend
1.high level and high performance. Widely used cylindrical gear carburizing and quenching, grinding, carrying capacity increased by more than 4 times, small volume, light weight, low noise, high efficiency and high reliability.
2.modular combination design. Basic parameters using priority number, size, parts versatility and interchangeability, series of easy to expand and newer, conducive to tissue mass production and reduce cost.
3.style diversification, variant design. To get rid of the traditional single base installation, added a hollow shaft mounted, floating bearing base, motor and reducer one-piece, different types, such as multiple mounting surface for expanding the
收藏