(江蘇專用)高考數(shù)學(xué)總復(fù)習 考前三個月 考前回扣6 立體幾何 理-人教版高三數(shù)學(xué)試題

上傳人:文*** 文檔編號:239559296 上傳時間:2024-02-04 格式:DOC 頁數(shù):6 大?。?60.50KB
收藏 版權(quán)申訴 舉報 下載
(江蘇專用)高考數(shù)學(xué)總復(fù)習 考前三個月 考前回扣6 立體幾何 理-人教版高三數(shù)學(xué)試題_第1頁
第1頁 / 共6頁
(江蘇專用)高考數(shù)學(xué)總復(fù)習 考前三個月 考前回扣6 立體幾何 理-人教版高三數(shù)學(xué)試題_第2頁
第2頁 / 共6頁
(江蘇專用)高考數(shù)學(xué)總復(fù)習 考前三個月 考前回扣6 立體幾何 理-人教版高三數(shù)學(xué)試題_第3頁
第3頁 / 共6頁

本資源只提供3頁預(yù)覽,全部文檔請下載后查看!喜歡就下載吧,查找使用更方便

10 積分

下載資源

資源描述:

《(江蘇專用)高考數(shù)學(xué)總復(fù)習 考前三個月 考前回扣6 立體幾何 理-人教版高三數(shù)學(xué)試題》由會員分享,可在線閱讀,更多相關(guān)《(江蘇專用)高考數(shù)學(xué)總復(fù)習 考前三個月 考前回扣6 立體幾何 理-人教版高三數(shù)學(xué)試題(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、回扣6 立體幾何 1.概念理解 四棱柱、直四棱柱、正四棱柱、正方體、平行六面體、直平行六面體、長方體之間的關(guān)系. 2.柱、錐、臺、球體的表面積和體積 側(cè)面展開圖 表面積 體積 直棱柱 長方形 S=2S底+S側(cè) V=S底·h 圓柱 長方形 S=2πr2+2πrl V=πr2·l 棱錐 由若干三角形構(gòu)成 S=S底+S側(cè) V=S底·h 圓錐 扇形 S=πr2+πrl V=πr2·h 棱臺 由若干個梯形構(gòu)成 S=S上底+S下底+S側(cè) V=(S++S′)·h 圓臺 扇環(huán) S=πr′2+π(r+r′)l+πr2 V=π(r2+rr′+

2、r′2)·h 球 S=4πr2 S=πr3 3.平行、垂直關(guān)系的轉(zhuǎn)化示意圖 1.易混淆幾何體的表面積與側(cè)面積的區(qū)別,幾何體的表面積是幾何體的側(cè)面積與所有底面面積之和,不能漏掉幾何體的底面積;求錐體體積時,易漏掉體積公式中的系數(shù). 2.不清楚空間線面平行與垂直關(guān)系中的判定定理和性質(zhì)定理,忽視判定定理和性質(zhì)定理中的條件,導(dǎo)致判斷出錯.如由α⊥β,α∩β=l,m⊥l,易誤得出m⊥β的結(jié)論,就是因為忽視面面垂直的性質(zhì)定理中m?α的限制條件. 3.注意圖形的翻折與展開前后變與不變的量以及位置關(guān)系.對照前后圖形,弄清楚變與不變的元素后,再立足于不變的元素的位置關(guān)系與數(shù)量關(guān)

3、系去探求變化后的元素在空間中的位置與數(shù)量關(guān)系. 1.將邊長為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周,所得幾何體的側(cè)面積是________. 答案 2π 解析 幾何體的底面圓半徑為1,高為1,則側(cè)面積S=2πrh=2π×1×1=2π. 2.用平面α截球O所得截面圓的半徑為3,球心O到平面α的距離為4,則此球的表面積為__________. 答案 100π 解析 依題意,設(shè)球的半徑為R,滿足R2=32+42=25, ∴S球=4πR2=100π. 3.(2017·南京高淳區(qū)質(zhì)檢)若正四棱錐的底面邊長為2,體積為8,則其側(cè)面積為__________. 答案 4 解析 因為V

4、=×(2)2h=8,所以h=3, 所以斜高h′==. 所以其側(cè)面積為S側(cè)=4×=4. 4.設(shè)m,n是不同的直線,α,β,γ是不同的平面,有以下四個命題: ①?β∥γ;②?m⊥β; ③?α⊥β;④?m∥α. 其中正確的命題是________.(填序號) 答案 ①③ 解析?、僦衅叫杏谕黄矫娴膬善矫嫫叫惺钦_的;②中m,β可能平行,相交或直線在平面內(nèi);③中由面面垂直的判定定理可知結(jié)論正確;④中m,α可能平行或線在面內(nèi). 5.在三棱錐S-ABC中,底面ABC是邊長為3的等邊三角形,SA⊥SC,SB⊥SC,SA=SB=2,則該三棱錐的體積為________. 答案  解析 如圖,

5、∵SA⊥SC,SB⊥SC,且SA∩SB=S, ∴SC⊥平面SAB, 在Rt△BSC中,由SB=2,BC=3,得SC=. 在△SAB中,取AB中點D,連結(jié)SD,則SD⊥AB,且BD=, ∴SD==, ∴V=××3××=. 6.已知m,n為不同直線,α,β為不同平面,給出下列命題: ①若m⊥α,m⊥n,則n∥α; ②若m⊥β,n⊥β,則m∥n; ③若m⊥α,m⊥β,則α∥β; ④若m?α,n?β,α∥β,則n∥m; ⑤若α⊥β,α∩β=m,n?α,m⊥n,則n⊥β. 其中正確的命題是________.(填寫所有正確命題的序號) 答案 ②③⑤ 解析 命題①,若m⊥α,

6、m⊥n,則n∥α或n?α,故不正確;命題②,若m⊥β,n⊥β,則m∥n,由線面垂直的性質(zhì)定理易知正確;命題③,由線面垂直的性質(zhì)定理易知正確;命題④,若m?α,n?β,α∥β,則n∥m或m,n異面,所以不正確;命題⑤是面面垂直的性質(zhì)定理,所以是正確命題.故答案為②③⑤. 7.如圖,三棱錐A-BCD的棱長全相等,點E為AD的中點,則直線CE與BD所成角的余弦值為__________. 答案  解析 方法一 取AB的中點G,連結(jié)EG,CG. ∵E為AD的中點,∴EG∥BD. ∴∠GEC為CE與BD所成的角.設(shè)AB=1, 則EG=BD=,CE=CG=, ∴cos∠GEC= = =

7、. 方法二 設(shè)AB=1,則·=(-)·(-)=·(-) =2-·-·+· =-cos60°-cos60°+cos60°=. ∴cos〈,〉===. 8.如圖所示,在邊長為5+的正方形ABCD中,以A為圓心畫一個扇形,以O(shè)為圓心畫一個圓,M,N,K為切點,以扇形為圓錐的側(cè)面,以圓O為圓錐底面,圍成一個圓錐,則圓錐的全面積S=________. 答案 10π 解析 設(shè)圓錐的母線長為l,底面半徑為r,由已知條件得 解得r=,l=4,則S=πrl+πr2=10π. 9.如圖,在四棱錐P-ABCD中,底面ABCD為矩形,PD⊥BC,G為PA上一點. (1)求證:平面PCD⊥平面A

8、BCD; (2)若PC∥平面BDG,求證:G為PA的中點. 證明 (1)∵底面ABCD為矩形,∴BC⊥CD, 又∵PD⊥BC,PD∩CD=D,CD,PD?平面PCD, ∴BC⊥平面PCD. 又∵BC?平面ABCD,∴平面ABCD⊥平面PCD. (2)連結(jié)AC交BD于點O,連結(jié)GO,∵PC∥平面BDG, 平面PCA∩平面BDG=GO, ∴PC∥GO, ∴=. ∵底面ABCD為矩形, ∴O是AC的中點,即CO=OA, ∴PG=GA,∴G為PA的中點. 10.在正四棱錐S-ABCD中,底面邊長為a,側(cè)棱長為a,P為側(cè)棱SD上的一點. (1)當四面體ACPS的體積為時,

9、求的值; (2)在(1)的條件下,若E是SC的中點,求證:BE∥平面APC. (1)解 設(shè)PD=x,連結(jié)BD,AC,交點為O.過P作PH⊥BD于點H,∵平面SBD⊥平面ABCD且BD為交線,則PH⊥平面ABCD,又SO⊥平面ABCD, ∴PH∥SO. 在Rt△SOB中,SO==a, ∵=, ∴PH===x, ∴VSPAC=VS-ACD-VP-ACD =×=a3, 解得x=a, ∴==2. (2)證明 取SP的中點Q,連結(jié)QE,BQ, 則EQ∥PC,EQ?平面PAC,PC?平面PAC, ∴EQ∥平面PAC. ∵P為QD的中點,O為BD的中點, ∴BQ∥PO,又BQ?平面PAC,PO?平面PAC, ∴BQ∥平面PAC, 而EQ與BQ為平面BEQ內(nèi)的兩條相交直線, ∴平面BEQ∥平面PAC, 而BE?平面BEQ,∴BE∥平面APC.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!