2019-2020年高中數(shù)學 第五課時 2.3從速度的倍數(shù)到數(shù)乘向量(二)教案 北師大版必修4.doc
《2019-2020年高中數(shù)學 第五課時 2.3從速度的倍數(shù)到數(shù)乘向量(二)教案 北師大版必修4.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學 第五課時 2.3從速度的倍數(shù)到數(shù)乘向量(二)教案 北師大版必修4.doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學 第五課時 2.3從速度的倍數(shù)到數(shù)乘向量(二)教案 北師大版必修4 一、教學目的:(1)了解平面向量基本定理;(2)理解平面里的任何一個向量都可以用兩個不共線的向量來表示,初步掌握應用向量解決實際問題的重要思想方法;(3)能夠在具體問題中適當?shù)剡x取基底,使其他向量都能夠用基底來表達. 二、教學重點:平面向量基本定理.教學難點:平面向量基本定理的理解與應用. 三、授課類型:新授課 四、教學過程: (一)、復習引入: 1.實數(shù)與向量的積:實數(shù)λ與向量的積是一個向量,記作:λ (1)|λ|=|λ|||;(2)λ>0時λ與方向相同;λ<0時λ與方向相反;λ=0時λ= 2.運算定律 結合律:λ(μ)=(λμ) ;分配律:(λ+μ)=λ+μ, λ(+)=λ+λ 3. 向量共線定理 向量與非零向量共線的充要條件是:有且只有一個非零實數(shù)λ,使=λ. (二)、探究新知 平面向量基本定理:如果,是同一平面內的兩個不共線向量,那么對于這一平面內的任一向量,有且只有一對實數(shù)λ1,λ2使=λ1+λ2. 探究:(1) 我們把不共線向量e1、e2叫做表示這一平面內所有向量的一組基底;(2) 基底不惟一,關鍵是不共線;(3) 由定理可將任一向量a在給出基底e1、e2的條件下進行分解;(4) 基底給定時,分解形式惟一. λ1,λ2是被,,唯一確定的數(shù)量 1.思考:①.是不是每一個向量都可以分解成兩個不共線向量?且分解是唯一?②.對于平面上兩個不共線向量,是不是平面上的所有向量都可以用它們來表示? 2.教師引導學生分析 O N B MM CM :設,是不共線向量,是平面內任一向量 = =λ1 ==+=λ1+λ2 = =λ2 得平面向量基本定理:如果,是同一平面內的兩個不共線向量,那么對于這一平面內的任一向量,有且只有一對實數(shù)λ1,λ2使=λ1+λ2. [注意幾個問題]:① 、必須不共線,且它是這一平面內所有向量的一組基底.② 這個定理也叫共面向量定理.③λ1,λ2是被,,唯一確定的數(shù)量.④同一平面內任一向量都可以表示為兩個不共線向量的線性組合. (三)、講解范例: 例1 已知向量, 求作向量-2.5+3. 例2 如圖 ABCD的兩條對角線交于點M,且=,=,用,表示,,和 例3已知 ABCD的兩條對角線AC與BD交于E,O是任意一點,求證:+++=4 例4(1)如圖,,不共線,=t (tR)用,表示. (2)設不共線,點P在O、A、B所在的平面內,且.求證:A、B、P三點共線. 例5 已知 a=2e1-3e2,b= 2e1+3e2,其中e1,e2不共線,向量c=2e1-9e2,問是否存在這樣的實數(shù)與c共線. (四)、課堂練習: 1.設e1、e2是同一平面內的兩個向量,則有( ) A.e1、e2一定平行 B.e1、e2的模相等 C.同一平面內的任一向量a都有a =λe1+μe2(λ、μ∈R) D.若e1、e2不共線,則同一平面內的任一向量a都有a =λe1+ue2(λ、u∈R) 2.已知矢量a = e1-2e2,b =2e1+e2,其中e1、e2不共線,則a+b與c =6e1-2e2的關系 A.不共線 B.共線 C.相等 D.無法確定 3.已知向量e1、e2不共線,實數(shù)x、y滿足(3x-4y)e1+(2x-3y)e2=6e1+3e2,則x-y的值等于( ) A.3 B.-3 C.0 D.2 4.已知a、b不共線,且c =λ1a+λ2b(λ1,λ2∈R),若c與b共線,則λ1= . 5.已知λ1>0,λ2>0,e1、e2是一組基底,且a =λ1e1+λ2e2,則a與e1_____,a與e2_________(填共線或不共線). (五)、小結:1、平面向量基本定理:如果,是同一平面內的兩個不共線向量,那么對于這一平面內的任一向量,有且只有一對實數(shù)λ1,λ2使=λ1+λ2.2、注意幾個問題① 、必須不共線,且它是這一平面內所有向量的一組基底.② 這個定理也叫共面向量定理.③λ1,λ2是被,,唯一確定的數(shù)量.④同一平面內任一向量都可以表示為兩個不共線向量的線性組合. (六)、課后作業(yè):見P100練習1、2題. 1、1kg的重物在兩根細繩的支持下,處于平衡狀態(tài)(如圖),已知兩細繩與水平線分別成30, 60角,問兩細繩各受到多大的力? 解:將重力在兩根細繩方向上分解,兩細繩間夾角為90 P1 P P2 30 60 =1 (kg) P1OP=60 P2OP=30 ∴=cos60=1?=0.5 (kg) =cos30=1?=0.87 (kg) 即兩根細繩上承受的拉力分別為0.5 kg和0.87 kg 2、如圖 ABCD的兩條對角線交于點M,且=,=, 用,表示,,和 D M A BM CM a b 解:在 ABCD中 ∵=+=+ =-=- ∴=-=-(+)=-- ==(-)=- ==+ =-=-=-+ 3、 如圖,在△ABC中,=, =,AD為邊BC的中線,G為△ABC的重心,求向量 D A BM CM a b 解法1:∵=, = 則== ∴=+=+而= D A EM CM a b BM FM GM ∴=+ 解法2:過G作BC的平行線,交AB、AC于E、F ∵△AEF∽△ABC ∴ == == == ∴=+=+ 五、教課反思:- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高中數(shù)學 第五課時 2.3從速度的倍數(shù)到數(shù)乘向量二教案 北師大版必修4 2019 2020 年高 數(shù)學 第五 課時 2.3 速度 倍數(shù) 到數(shù)乘 向量 教案 北師大 必修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.italysoccerbets.com/p-2614428.html