熱軋鋼板校平機設(shè)計含3張CAD圖,熱軋,鋼板,校平機,設(shè)計,CAD
附錄一:
破損鋼板在熱矯直過程中的原理
摘要:成型結(jié)構(gòu)鋼中最具代表性的一個基本組成就是鋼板。橋梁結(jié)構(gòu)的損壞主要表現(xiàn)在這些基礎(chǔ)鋼板以及它們的一些強的和/或者比較弱的軸的彎曲。這篇文章的目的就是描述鋼板熱矯直的基于 實驗和分析的研究以及提出與鋼板應(yīng)用有關(guān)的一些工程學(xué)標(biāo)準(zhǔn)。我們組織一項實驗計劃來研究鋼板在熱矯直中的反應(yīng)并且分析一些重要的影響該反應(yīng)的參數(shù)。實驗中我們將各種鋼板加熱至 300 度以上。發(fā)現(xiàn)影響矯直的一些基本的因素有 V 字形熱度的角度、加熱過程中鋼的溫度和外部施加的力。加熱后的塑性變形直接與這些參數(shù)成比例。為了幫助工程師們?nèi)ヮA(yù)測熱矯直中鋼板的反應(yīng),我們得到一個簡單的數(shù)學(xué)公式。這個公式反映了每 V 字形熱度的平均塑性變形與 V 字形角、加熱溫度、外界施加的力、熱膨脹系數(shù)和屈服應(yīng)力的關(guān)系。這個公式能夠很好地和實驗數(shù)據(jù)吻合,而且是第一個包含有加熱溫度及外部力的大小的簡單公式。這一分析方法也會逐漸地擴展到以下幾個方面:軋制成型、軸向加載的物質(zhì)和簡單或復(fù)合的珩架結(jié)構(gòu)。
緒論
成型結(jié)構(gòu)鋼中最具代表性的一個基本組成就是鋼板。橋梁結(jié)構(gòu)的損壞主要表現(xiàn)在這些基礎(chǔ)鋼板以及它們的一些強的和/或者比較弱的軸的彎曲。這篇文章的目的就是描述鋼板熱矯直的基于實驗和 分析的研究以及提出與鋼板應(yīng)用有關(guān)的一些工程學(xué)標(biāo)準(zhǔn)。這一工作形成了軋制成型中熱矯直擴展的基礎(chǔ)。
幾個關(guān)于鋼板的 V 字形熱度的研究已經(jīng)實施。V 字形熱度指的是鋼板的強軸的矯直傾向的加熱曲線,我們將在以下的部分當(dāng)中進行詳細(xì)的描述。這些研究已經(jīng)嘗試著去分析影響 V 字形熱度的參數(shù)并且演變出一個基于該數(shù)據(jù)的初步模型。Nicholls 和Weeerth(1972)描述了一個頂角在 24°~60°并且有一個 6°增量、大小為 211 的 V 字形熱度作用于一個 10mm 厚的 A36 鋼板上所產(chǎn)生的彎曲度。這個 V 字形的深度也分為滿深度、四分之三深度和二分之一深度不等。除了得出 V 字形角和它的深度越大產(chǎn)生的彎曲越大這個結(jié)果外,他沒有做其他的有關(guān)這些參數(shù)的影響的估算。Roeder(1986)也做了一個關(guān)于未損壞的 V 字形熱度鋼板的研究。他采用了一些精密的檢測設(shè)備,如熱電偶、接觸式高溫計和應(yīng)變儀。另外還有常規(guī)的工具,如游標(biāo)卡尺和鋼板標(biāo)尺。由于這是第一次的嘗試著去從實驗和分析的角度來量化鋼板在熱矯直過程中的很大范圍的一些參數(shù),所以這項工作是很有意義的。這些參數(shù)主要是 V 字形幾何學(xué)、樣本幾何學(xué)、加熱溫度、速度、鋼種、控制力、最初的殘余應(yīng)力和淬火。Roeder 的關(guān)于這些參數(shù)結(jié)論是基于 60 度左右的溫度得到的。結(jié)果這只有很少數(shù)的反復(fù)的熱度利用了同一參數(shù)。雖然從這個數(shù)據(jù)中我們可以得到它們的變化趨勢,但是由于數(shù)據(jù)太少,限制了
對結(jié)果的量化價值。盡管這樣,他的研究卻給我們提供了這里所提到的很多實驗工作的最初的基礎(chǔ)。Roeder 的大部分結(jié)論是:
l 一個實用的和安全的加熱上限是 650℃(1200℉)
l 當(dāng)加熱溫度保持在大約 720℃(1330℉)這個相變溫度以下時,材料性能上的變化很小
l 由 V 字形熱度所產(chǎn)生的塑性變形是直接和 V 字形角和加熱溫度成正比的
l 由 V 字形熱度所產(chǎn)生的塑性變形是直接和在加熱過程中的 V 角的開口端集中的控制力成正比的
l 淬火是很有效的并且可能增加 V 字形熱度的變形,但是加熱溫度必須在相變溫度以下【盡管一些試驗員認(rèn)為只有在加熱溫度低于 700℉或者 370℃才能進行淬火】
l 塑性變形主要產(chǎn)生在 V 字形熱度區(qū)域以內(nèi)
l 塑性變形對鋼板的幾何形狀很敏感的。但是多數(shù)的敏感度都可以歸結(jié)于加熱速度和加熱流 程上的不同
這篇文章里的研究可以擴展至 Roder 的工作并且包含足夠的用來定量這些和一些其它的結(jié)論的反復(fù)的數(shù)據(jù)。
關(guān)于熱矯直的文獻最近幾十年就有了,1989 年前就在一些文章中出現(xiàn)了有關(guān)它的評論。但是, 整個過程的工程學(xué)量化已經(jīng)缺少了。極少數(shù)技術(shù)人員目前還是用一些基于他們多年的經(jīng)驗的方法來指導(dǎo)他們進行維修。對于缺少這些經(jīng)驗的工程人員來說,他們就需要一套解析程序來決定他們怎么在一項特殊修理中將熱矯直過程做好。由于經(jīng)濟上的原因,這些解析工具必須相當(dāng)?shù)目焖?、便于使用,并且能夠適應(yīng)不同的 V 字形幾何、加熱溫度范圍、外加負(fù)載和支持抑制。目前,存在著兩個極端:(1)一些極度簡單的模型(Holt 1965,1971;Moberg 1979),這些模型并不能計算出溫度范圍或者內(nèi)在、外在的控制力對系統(tǒng)的影響;(2)全面的計算機模型(Chin 1962;Burbank 1968;Weerth 1971;Horton 1973;Roder 1985,1986,1987),這些模型是基于彈塑性有限元素或者有限條壓力分析和一個相似的熱量分析的。但是前者太簡單以至于不能夠精確估算過程中的表現(xiàn);后者需要一個相當(dāng)長的計算機計算過程,這樣也不是實用的辦公設(shè)計工具。結(jié)果,我們還是需要一個分析模型, 這種模型不僅實用,而且能夠提供全面的有關(guān)所有重要的精確的預(yù)先表現(xiàn)的結(jié)論。
一個沒有包含在比較簡單的公式中的重要的考慮就是外在、內(nèi)在的控制力的影響。外在力是用 來產(chǎn)生彎曲活動從而將工件拉直。在加熱過程中能夠在 V 角的開口端產(chǎn)生壓縮的外在力可以增加限制從而增加每一熱度所產(chǎn)生的變形。被 Holt 和 Moberg 引用的領(lǐng)域中的應(yīng)用涉及到控制力的使用。因為在大多數(shù)情況中,材料的單獨的抑制將會比完美的緊閉少,這似乎說明在被修理的結(jié)構(gòu)上的實
際的與預(yù)料的活動之間的相互關(guān)系,就像 Holt 和 Moberg 所提到的那樣,最初是外在力的影響的結(jié)果。一個改善了的模型應(yīng)該百含有內(nèi)在、外在力的影響。
這篇文章的目的就是量化影響鋼板熱矯直的參數(shù),并且設(shè)計一個簡單有效的程序來預(yù)測熱矯直 過程中變形了的鋼板的反應(yīng)。我們所選的方法必須首先就能夠分析熱矯直過程中可以產(chǎn)生重大影響 的所有參數(shù)。這個階段的完成就需要我們對早先的研究所獲得的試驗數(shù)據(jù)進行研究,并且進行一項 更進一步的試驗過程,從中獲得另外的數(shù)據(jù)。當(dāng)我們將這兩者的數(shù)據(jù)結(jié)合起來后,一個用來預(yù)測鋼 板的反應(yīng)的分析程序就產(chǎn)生了。
實驗計劃結(jié)果的評估V 角
研究者認(rèn)為其中一個影響鋼板塑性變形的最基本的參數(shù)就是 V 角(Holt 1971; Roder 11986; Avent 1989)。數(shù)據(jù)顯示出了塑性變形和 V 角之間的近乎線性的關(guān)系。正是因為這個,大多數(shù)的數(shù)據(jù)必須和 V 角一起作為縱坐標(biāo),而塑性變形Wp 作為橫坐標(biāo)。這樣第一個最小二次方曲線就出現(xiàn)了。隨后的圖形就說明了這些變量之間的一致的比例關(guān)系。
V 角深度
以前的研究者(Holt 1971; Roder 1985)已經(jīng)得出這樣的結(jié)論:塑性變形和深度比 Rd 是成比例的,這個深度比就是指的 V 角深度 dv 與鋼板寬度 W 的比。對 Roder 在 6507℃(12007℉)~6807℃
(61507℉)范圍內(nèi)的測試數(shù)據(jù)的再次研究對于 V 角深度的影響無關(guān)緊要。由于數(shù)據(jù)稀少,不論是深度比是 0.75 還是 0.67,都不會導(dǎo)致一貫發(fā)生的塑性變形。為了進一步評估這一現(xiàn)象,我們又組織了一連串的實驗,深度比分別為 0.5、0.75 和 1,V 角從 207 變到 607。對于其中每一個情況,我們都用了至少 3 中溫度作用于最初平直的鋼板上,并且將結(jié)果求平均值。結(jié)果顯示在圖 2 中,對三種深度比、三種 V 角和 2 個增加了的比率進行了對比。
增量比率反映了控制力常常在 V 字形熱度區(qū)域產(chǎn)生一個大小相當(dāng)于鋼板最大彎曲功率 25%或者50%的瞬間力。就像在圖 2 中看到的那樣,深度比 75%和 100%軌跡相近。實際上,75%的深度比在 6 中情況之中的一個情況中導(dǎo)致較大一些的塑性變形。當(dāng)和其它的兩個相比較時,50%的深度比產(chǎn)生了 一個不穩(wěn)定的行為。在 6 個當(dāng)中的 3 中情況中,50%的深度比產(chǎn)生了較小的塑性變形。在另外的 3 中情況中,塑性變形是很相似的。
為了進一步分析這種行為,我們將一些鋼板毀壞并且再將它們矯直。毀壞程度是很大的,以至于我們要在大多數(shù)的鋼板上都要施加至少 20 的熱度。因此,更多的令人滿意、意義重大的平均塑性變形就從這次測試中得到了。結(jié)果顯示在圖 3 中,對應(yīng)一種增量比 0.5 和兩個 V 角深度比 0.75、1.0。
再次說明塑性變形的樣式和 V 角深度比沒有一個直接的關(guān)系。
因此,盡管直覺告訴我們,增加 V 角深度比可以增加塑性變形,但是對于這一結(jié)論卻沒有實驗證據(jù)。我們可以得到如下結(jié)論,0.75~1.0 之間的 V 角深度比對塑性變形的影響是很小的。但是,
0.5 的 V 角深度比可能會減小塑性變形。
鋼板厚度和寬度
研究者一般認(rèn)為鋼板的厚度對塑性變形的影響是可以忽略的。唯一的數(shù)據(jù)說明鋼板厚度必須足夠小以便于熱量能夠平衡地滲透鋼板。實際的厚度一般在 19~25mm(3∕4-1 in.)之間。厚一點的鋼板可以兩邊都進行加熱以保證熱量在厚度方向上的均衡滲透,或者將鋼板稍微傾斜也可以實現(xiàn)。圖 4 表示了不同厚度的鋼板的測試結(jié)果。
每一個長條代表了作用于單獨一個鋼板的至少 3 個熱度的平均值。這個測試中沒有應(yīng)用控制力。結(jié)果說明可能發(fā)生在大多數(shù)熱度情況下的鋼板的變化。但是,對于三種不同的 V 角,并沒有鋼板厚度上的明顯的模式。結(jié)果的隨意性說明塑性變形不是鋼板厚度影響的結(jié)果。我們在前面擁有較少參數(shù)的測試中也發(fā)現(xiàn)了相似的傾向(Roder 1985)。
除了鋼板的厚度,鋼板的三種寬度也進行了研究,示于圖 5 中。塑性變形是三種熱度情況下的變形的平均值。我們留心了一個作用在 102mm(4-in.)的鋼板上的罕見的極低的平均值。但是,卻沒有發(fā)現(xiàn)介于 203mm(8-in)和 302mm(12-in)寬度之間鋼板中的區(qū)別。這些測試的結(jié)果表明鋼板寬度和塑性變形之間并沒有一個清楚的關(guān)系。Roder(1985)所做的測試同樣說明了一個相似的傾向。
總起來說,鋼板厚度和寬度對塑性變形的影響是很小的。測試結(jié)果確確實實說明了熱矯直過程 中的鋼板反應(yīng)的變化情況。這里所說的波動對變化特征的影響比鋼板幾何形狀對它的影響要顯著。 從而,鋼板幾何形狀是作為影響塑性變形行為的輔助因素來看待的。
溫度
熱矯直中一個最重要的也是很難去控制的參數(shù)就是被加熱材料厚度方向上的溫度。影響溫度的因素有火焰口的大小、火焰的強烈程度、加熱速度和鋼板的厚度。在這個實驗中,Roder(1985)讓富有經(jīng)驗的操作者加熱,并且對其熱度進行了仔細(xì)的測量。他發(fā)現(xiàn)這些操作者,在通過顏色來辨別溫度時,通常判斷誤差大約為 567℃(1007℉),而且在很多情況下都有 1117℃(2007℉)那么大。從而, 在溫度控制中有相當(dāng)可觀的變化,即使這是很有經(jīng)驗的人做的。
為了進一步清楚的定義 Roder 實驗中數(shù)據(jù)所顯示的變形行為,我們在鋼板上作用了很多的加熱溫度來進行研究,從 3707℃到 8157℃,并且有一個 567℃的增量。結(jié)果顯示在圖 6 中,這里每一個數(shù)據(jù)點代表了三種熱度循環(huán),并且這些點由一條直線連接起來以便于辨認(rèn)。
這里一個很清楚并且有規(guī)則的隨著溫度的增加塑性變形也增加的曲線關(guān)系就有了。曲線之所以 那么有規(guī)律,是因為這些溫度的調(diào)節(jié)是由一個技師來完成的,并且增量的調(diào)節(jié)也是步調(diào)一致的。
大多數(shù)研究者認(rèn)為對于除了淬火和調(diào)質(zhì)處理了的高強度鋼以外的所有的鋼板的最大的加熱溫度是 6507℃。對于碳鋼,更高的溫度會導(dǎo)致更大的變形;但是,平面以外的扭曲有可能發(fā)生,而且表面損壞如蝕斑在 7607-8707℃時會產(chǎn)生。同時,溫度超過 7007℃可能導(dǎo)致分子組成的變化進而可能導(dǎo)致冷卻時材料性能上的變化。在這點上的極限安全溫度是 6507℃。對于淬火、調(diào)質(zhì)處理的鋼,熱矯直過程可以進行,但是對于A514 和A709(等級在100 和100W)溫度必須控制在5937℃,對于A709(等級為 70W)溫度為 5667℃,以保證調(diào)質(zhì)溫度不會超過所需的溫度并且不會影響材料的性能。允許的能被熱矯直的淬火、調(diào)質(zhì)鋼和 Shanafelt 和 Horn(1984)所建議的正好相反;但是,文章中并沒有提及反作用。
為了控制加熱溫度,對于不同厚度的鋼板,我們要采取不同的加熱速度和火焰口的大小、類型。 但是只要溫度很快達(dá)到合適的水平,收縮影響還是相似的。這個結(jié)論已經(jīng)被兩個實驗證明了,在這兩個實驗中,我們選擇了不同的鋼板,也用了不同強烈程度的火焰。其一,我們用了低強度的火焰緩慢地增加到 6507℃,另一個中,火焰強度很大同時快速地增大到最高溫度。兩種情況下地變形很相似。
控制力
控制力這個術(shù)語既可以是外在的力,也可以是內(nèi)在的力。這些力如果能被合理的利用,可以促 進矯直過程。但是,不能被合理地理解,控制力會擾亂甚至是阻礙矯直過程。熱矯直地基本理論就 是產(chǎn)生塑性變形導(dǎo)致厚度方向上的擴充,然后就是冷卻階段的縱向彈性收縮。
盡管操作者已經(jīng)意識到在矯直過程中的控制力的重要性,但是很少有研究者去量化它的影響。
我們組織了一連串的測試用來估計這個參數(shù)。實驗當(dāng)中,我們在一塊鋼板上作用了一個控制力,最后這個控制力在強軸方向上產(chǎn)生了一個傾向于減小 V 角的瞬間力。這個瞬間力是沒有量綱的,它只是在 V 角處產(chǎn)生了這個瞬間力的比率 M j M p 。這個測試包含有從 0 到 50%變化的控制比,其中有四個不同的 V 角而且 V 角延伸至要么四分之三鋼板厚度要么整個鋼板厚度。結(jié)果顯示在圖 7 和 8 中。
從這個數(shù)據(jù)中我們得出如下的結(jié)論:塑性變形的變化和控制比的變化成比例的,合適的外在負(fù)載會很大程度上促進熱矯直過程。Roder(1985) 也研究了不同的控制力的影響,也發(fā)現(xiàn)了相似的表現(xiàn)。但是數(shù)據(jù)點的數(shù)量很有限。
圖 7 和 8 中顯示的結(jié)果是基于無形變的鋼板在不同的數(shù)據(jù)點上進行了三到四次的加熱得出的。
任何一個確定的參數(shù)的總的數(shù)據(jù)點大約都是 6 或者更少。盡管這數(shù)據(jù)說明了基本參數(shù)所所引起的變化傾向,但是數(shù)據(jù)太少以致于不能夠包含令人滿意的價值。為了彌補這個缺陷,我們做了另外一組 實驗,這實驗是用了最初是被損壞了的同樣 6mm 厚的鋼板,然后進行加熱一直到矯直完成。這兩個鋼板被加熱至熱度為 20 到 100。表格一中給出了這個實驗中各個參數(shù)和塑性變形的概要情況。
加熱溫度是 6507℃。其中的一些結(jié)果被劃分在圖 9 中用以說明控制力的影響。平均是三種情況下的平均數(shù)。平均數(shù)的 95%的置信區(qū)間也示于圖 9 中,它提供了熱矯直中典型的分散的測驗數(shù)據(jù)。我們再一次發(fā)現(xiàn)塑性變形和控制力時成比例的。
我們沒有發(fā)現(xiàn)其中一個很有趣的現(xiàn)象,那就是最初的幾次加熱導(dǎo)致了相當(dāng)大的塑性變形,特別 是第一次加熱。這些最初的加熱過后,塑性變形就一致變得比較小,并且后來的加熱中再也沒有顯 示出什么有意義的變化。這種現(xiàn)象要歸因于在損壞過程中產(chǎn)生的最初的殘余應(yīng)力。這個結(jié)果的含義 就是理論公式應(yīng)該建立在有相當(dāng)多的實驗數(shù)據(jù)的基礎(chǔ)上,而不是只有幾個數(shù)據(jù)。這里所提到的所有 的數(shù)據(jù)中,序列中所有熱度的平均值都應(yīng)用到了。就像預(yù)料中的那樣,當(dāng) 3 個或多個熱度的平均值
作用于平直鋼板上,10 個或者更多的熱度的平均值作用于損壞了的鋼板上時候,二者每一熱度所發(fā)生的變化是很相似的。
第二種類型的有可能施加到鋼板的外部控制力就是軸向控制力。同樣也進行了一連串的測試, 這個測試是對于每一 V 角我們都在鋼板上施加了軸向的迭加負(fù)載。這個負(fù)載產(chǎn)生了一個 138MP 的軸向應(yīng)力或者說是相當(dāng)于公稱屈服應(yīng)力 56%的實際應(yīng)力。這些結(jié)果表示在圖 8 中,以便于和彎曲控制力產(chǎn)生的結(jié)果相比較。應(yīng)用軸向載荷并不是一個很有效增加塑性變形的方法。
為了概括這個實驗研究的結(jié)果,已經(jīng)發(fā)現(xiàn)的由 V 角產(chǎn)生的對塑性變形有很重要的影響的參數(shù)主要有:(1)V 角;(2)鋼板溫度;(3)外在的控制力。V 角深度在通常范圍內(nèi),也就是鋼板寬度的四分之三或者更大,看起來對變形影響很小。同樣地,只要是需要的加熱模式和溫度能夠達(dá)到,鋼板的 尺寸對變形的影響也很小。
概要和結(jié)論
由于鋼板是任何軋制或者建筑的基本的元素,所以理解鋼板在熱矯直過程中的反應(yīng)是最基本的。 一些熱矯直的實驗過程都已經(jīng)備份了文件,這些實驗是對 70 的鋼板樣品采用近乎 600 的加熱循環(huán)來進行的。我們對很多因素進行了估計以便于了解它們對塑性變形的影響,這些塑性變形是鋼板上每一 V 字形熱度產(chǎn)生的。另外,我們也建立了一個數(shù)學(xué)模型用來預(yù)測塑性變形的大小。
在研究的實際范圍內(nèi),熱矯直過程中對塑性變形有著最重要的影響的一個因素就是 V 字形熱度的角度、V 角區(qū)域的最高溫度和外部力。已經(jīng)證實了塑性變形和 V 角、溫度、外部力是有著直接的
比例關(guān)系的,盡管數(shù)據(jù)上有一點波動。另一方面,和鋼板寬度有關(guān)的 V 角的深度對于3 鋼板寬度 75%
的 V 角深度并沒有什么重大意義。只要是熱供應(yīng)過程中熱量能夠很好的滲透鋼板,鋼板厚度也可視
為無關(guān)緊要。為了幫助工程師來預(yù)測鋼板在熱矯直過程中的反應(yīng),我們建立了一個簡單的數(shù)需公式。 這個公式表示的是每一的熱度上的平均塑性變形與 V 角、鋼板溫度、外部力的大小、熱膨脹系數(shù)和屈服應(yīng)力之間的關(guān)系。公式和實驗數(shù)據(jù)吻合的很好,并且是第一個包含有鋼板加熱溫度、外部力的大小的簡單計算公式。這種分析方法將會擴展至很大,從而包含有軋制成型行為,軸向加載物質(zhì)和簡單的和復(fù)雜的桁架。
河海大學(xué)文天學(xué)院本科畢業(yè)設(shè)計(論文)
附錄二:
HEAT STRAIGHTENING DAMAGED STEEL PLATE ELEMENTS
By R. Richard Avent,1 David J. Mukai,2 Paul F. Robinson,3 and Randy
J. Boudreaux4
ABSTRACT: The fundamental element of any structural steel shape is the flat plate.
Damage to bridge structures consists of these plate elements, in combination, bent about their strong and/or weak axes. The purpose of this paper is to describe experimental and analytical research on heat straightening as applied to plates and to present related engineering criteria for its
use. An experimental program was conducted to evaluate the response of plates to heat straightening and to identify important parameters influencing behavior. Over 300 heats were applied to a variety of plates. The primary factors influencing straightening were the angle of the vee heat, steel temperature during heating, and external restraining forces. The plastic rotation after heating was directly proportional to these parameters. To aid engineers in predicting plate
movements during heat straightening, a simple mathematical formula was developed. This equation relates the average plastic rotation per vee heat to vee angle, steel temperature, magnitude of restraining force, coefficient of thermal expansion, and yield stress. The formula compares well to the experimental data and is the first simple formula available that includes the
parameters of heating temperature and magnitude of restraining force. The form of this analytical approach also will lend itself toward extensions, including the behavior of rolled shapes, axially loaded members, and composite and noncomposite girders.
INTRODUCTION
The fundamental element of any structural steel shape is the flat plate. Damage to bridge structures consists of these plate elements, in combination, bent about their strong and/or weak axes. The purpose of this paper is to describe experimental and analytical research on heat
straightening as applied to plates and to present related engineering design criteria for its use. This work forms the basis for extensions to heat straightening of rolled shapes.
Several detailed studies have been conducted for vee heats applied to plates. The vee heat is the
59
usual heating pattern for straightening plates bent about their strong axis and is explained in detail in a later section. These studies have attempted to identify parameters that influence vee heats and to develop predictive models based on this data. Nicholls and Weerth (1972) described the bends produced by 211 vee heats whose apex angle varied from 247 to 607 in 67 increments applied to
10- mm (3/8-in.) thick A36 steel plate. The vee depth was also varied over full depth, three-fourth depth, and onehalf depth. No attempt was made to evaluate the effect of these parameters other than the general result that the greater the vee angle and depth, the greater the bend produced.
Roeder (1986) also conducted a study on undamaged vee heated plates. He employed sophisticated monitoring equipment such as thermocouples, contact pyrometers, and strain gauges, as well as more conventional tools such as vernier caliper and a steel ruler. His work is particularly significant as the first attempt to both experimentally and analytically quantify heatstraightening behavior for plates over a wide range of parameters. The parameters included
vee geometry, specimen geometry, heating temperature and rate, steel grade, restraining force, initial residual stresses, and quenching. Roeder’s conclusions were based on approximately 60 heats over a wide range of parameters. As a result there were relatively few
re-petitive heats using identical parameters. Although trends could be drawn from this data, its sparseness limited the quantitative value of the results. However, his research provided the initial basis for much of the experimental work reported here. Roeder’s most significant conclusions
were
? A practical and safe upper heating treatment limit is 6507C (1,2007F).
? Changes in material properties are small when the heating temperature remains below the phase transition temperature of approximately 7207C (1,3307F).
? The rotation produced by a vee heat is directly proportional to vee angle and heating
temperature.
? The rotation produced by a vee heat is directly proportional to restraining forces that produce compression in the open end of the vee during heating.
? Quenching is effective and may increase vee heat rotations, but heating temperatures
should be kept below the phase transition temperature [although some practitioners recommend quenching only if the steel temperature is below 7007F or (3707C)].
? Plastic strain occurs primarily within the vee heat region.
? Plastic strain is somewhat sensitive to geometry of the plate. However, much of this sensitivity can be attributed to differences in rate of heating and heat flow. The research described in this paper extends Roeder’s work and includes enough repetitive data points to quantify these
and other conclusions.
Literature on heat straightening has been available for many years as reviewed in a
state-of-the-art paper by Avent (1989). However, engineering quantification of the process has been lacking. The handful of practitioners currently using the method rely extensively on their many years of experience to guide them through a repair. An engineer lacking this wealth of experience needs a set of analytical procedures to determine how best to apply the
heat-straightening process to a particular repair. These analytical tools, for reasons of economy, should be relatively fast, easy to apply, and allow for such considerations as different vee geometries, temperature ranges, external loadings, and support restraints. At present, two extremes exist: (1) Overly simplistic models (Holt 1965, 1971; Moberg 1979) that cannot take into account the effect of either temperature variations or internal and external restraint; and (2) comprehensive computer models (For Chin 1962; Burbank 1968; Weerth 1971; Horton 1973; Roeder 1985, 1986, 1987) based on elastic-plastic finite-element or finite-strip stress analysis combined with a similar thermal analysis. Whereas the former is too simplistic to accurately
predict behavior, the latter requires such lengthy computational effort as to not be practical for design office use. As a result, there is a need for an analytical model that offers both practicality and comprehensive inclusion of all important variables to accurately predict behavior.
An important consideration not included in the more simple formulations is the influence of external and internal restraining forces. External forces typically are applied to produce bending moments tending to straighten the member. The external forces, producing compression on the
open end of the vee during heating, will increase the available confinement and, therefore,
increase the rotation produced per heat. The field applications cited by both Holt and Moberg involved the use of restraining forces. Because in most cases the material restraint alone will be less than perfect confinement, it seems likely that any correlation between the predicted and
actual movement in the structures being repaired, as noted by both Holt and Moberg, is
primarily due to the influence of the external forces. An improved analytical model should include the effects of both internal and external restraints.
The purpose of this paper is to quantify the parameters influencing the heat straightening of plate elements and to develop simple yet efficient procedures for predicting the response of deformed steel plates during the heat-straightening process. The approach chosen was to first identify all parameters that have an important influence on the heat-straightening process. This phase was accomplished by studying the experimental data available from previous research as well as by conducting an extensive experimental program to provide additional data. After synthesizing this experimental data, an analytical procedure for predicting member response was
developed.
EVALUATION OF RESULTS OF EXPERIMENTAL PROGRAM
Vee Angle
Researchers agree that one of the most fundamental parameters influencing the plastic rotation of a plate is the vee angle (Holt 1971; Roeder 1986; Avent 1989). The data shows a fairly linear relationship between plastic rotation and vee angle. For this reason, most data will be plotted with the vee angle as the ordinate and plastic rotation wp as the abscissa. A first-order
least-squares curve fit will sometimes be shown. Plots in succeeding sections show a consistent proportional relationship between these variables.
Depth of Vee
Past researchers (Holt 1971; Roeder 1985) have concluded that the plastic rotation is proportional to the depth ratio Rd, which is the ratio of vee depth dv to plate width W. A review of Roeder’s test data in the range of 6507C (6807) [1,2007F (61507)] is inconclusive as to vee depth effect. Recognizing that the data was sparse, neither the depth ratio of 0.75 nor 0.67 produced plastic rotations that were consistently hiearchial. To further evaluate this behavior, a series of tests was conducted for depth ratios of 0.5, 0.75, and 1.0 and vee angles ranging from 207 to 607. At least three heats were conducted on initially straight plates for each case and the
results averaged. The results are shown in Fig. 2 for a combination of three depth ratios, three vee angles, and two jacking ratios.
The jacking ratios reflect that a jacking force was used to create a moment at the vee heat zone equal to either 25 or 50% of the ultimate bending capacity of the plate. As can be seen from Fig. 2, the depth ratios of 75 and 100% track each other well. In fact the 75% depth ratio resulted in slightly larger plastic rotations in all but one of the six cases. The 50% depth ratio resulted in an erratic behavior when compared to the other two. In three of the six cases the 50% depth ratio produced much smaller plastic rotations. In the other three cases, the plastic rotations were similar.
To further verify this behavior, a series of plates was damaged and straightened. The degree of damage was large enough that at least 20 heats were required for most of these plates. Therefore, more statistically significant average plastic rotations were obtained from these tests. Results are compared in Fig. 3 for a jacking ratio of 0.5 and two vee depth ratios, 0.75 and 1.0. Again the pattern of plastic rotations does not have a direct correlation to the vee depth ratios.
Therefore, although it would seem intuitive that increasing the vee depth would increase the plastic rotation, there is no experimental justification for such a general statement. It can be concluded that the variation of vee depth ratios between 0.75 and 1.0 has little influence on plastic rotation. However, a vee depth ratio of 50% may reduce the plastic rotations.
Plate Thickness and Width
Researchers have generally considered plate thickness to have a negligible effect on plastic rotation. The only reservation has been expressed that the plate should be thin enough to allow a relatively uniform penetration of the heat through the thickness. The practical limiting value is on the order of 19–25 mm (3/4–1 in.). Thicker plates can be heated on both sides simultaneously to ensure a uniform distribution through the thicknesses, or a rosebud tip can be used. The results from tests involving different plate thicknesses are shown in Fig. 4.
Each bar represents the average of at least three heats on a single plate. No jacking forces were used in these tests. The results illustrate the level of variability that may occur among groups of heats. However, there is no discernable pattern among the plate thicknesses for the three different vee angles used. The randomness of these results indicates that plastic rotation is not a function of plate thickness. A similar trend was found in earlier tests with fewer variables (Roeder 1985).
In addition to thickness, three plate widths were studied, as shown in Fig. 5.
The plastic rotations are the average of three heats. An unusually low average was observed for the 102-mm (4-in.) width. However, little difference was found between the 203-mm (8-in.) and 302-mm (12-in.) widths. The results of these tests show no clear relationship between plastic rotation and plate width. T
鏈接地址:http://m.italysoccerbets.com/article/29148875.html