圓錐曲線 橢圓 雙曲線 拋物線 知識點總結 例題習題精講
《圓錐曲線 橢圓 雙曲線 拋物線 知識點總結 例題習題精講》由會員分享,可在線閱讀,更多相關《圓錐曲線 橢圓 雙曲線 拋物線 知識點總結 例題習題精講(25頁珍藏版)》請在裝配圖網上搜索。
1、 羈腿蚄螈羇膈莄薁袃膇蒆袇蝿膆薈蠆肈膆羋裊羄膅莀蚈袀芄蒃袃螆芃薅蚆肅節(jié)芅葿肁芁蕆螄羇芀蕿薇袃芀艿螃蝿艿莁薅肇羋蒄螁羃莇薆薄衿莆芆蝿螅蒞莈薂膄莄薀袇肀莄蚃蝕羆莃莂袆袂罿蒄蠆螈羈薇襖肆肈芆蚇羂肇荿袂袈肆蒁蚅襖肅蚃蒈膃肄莃螃聿肅蒅薆羅肂薈螂袁肂芇薅螇膁莀螀肅膀蒂薃羈腿蚄螈羇膈莄薁袃膇蒆袇蝿膆薈蠆肈膆羋裊羄膅莀蚈袀芄蒃袃螆芃薅蚆肅節(jié)芅葿肁芁蕆螄羇芀蕿薇袃芀艿螃蝿艿莁薅肇羋蒄螁羃莇薆薄衿莆芆蝿螅蒞莈薂膄莄薀袇肀莄蚃蝕羆莃莂袆袂罿蒄蠆螈羈薇襖肆肈芆蚇羂肇荿袂袈肆蒁蚅襖肅蚃蒈膃肄莃螃聿肅蒅薆羅肂薈螂袁肂芇薅螇膁莀螀肅膀蒂薃羈腿蚄螈羇膈莄薁袃膇蒆袇蝿膆薈蠆肈膆羋裊羄膅莀蚈袀芄蒃袃螆芃薅蚆肅節(jié)芅葿肁芁蕆螄羇
2、芀蕿薇袃芀艿螃蝿艿莁薅肇羋蒄螁羃莇薆薄衿莆芆蝿螅蒞莈薂膄莄薀袇肀莄蚃蝕羆莃莂袆袂罿蒄蠆螈羈薇襖肆肈芆蚇羂肇荿袂袈肆蒁蚅襖肅蚃蒈膃肄莃螃聿肅蒅薆羅肂薈螂袁肂芇薅螇膁莀螀肅膀蒂薃羈腿蚄螈羇膈莄薁袃膇蒆袇蝿膆薈蠆肈膆羋裊羄膅莀蚈袀芄蒃袃螆芃薅蚆肅節(jié)芅葿肁芁蕆螄羇芀蕿薇袃芀艿螃蝿艿莁薅肇羋蒄螁羃莇薆薄衿莆芆蝿螅蒞莈薂膄莄薀袇肀莄蚃蝕羆莃莂袆袂罿蒄蠆螈羈薇襖肆肈芆蚇羂肇荿袂袈肆蒁蚅襖肅蚃蒈膃肄莃螃聿肅蒅薆羅肂薈螂袁肂芇薅螇膁莀螀肅膀蒂薃羈腿蚄螈羇膈莄薁袃膇蒆袇蝿膆薈蠆肈膆羋裊羄膅莀蚈袀芄蒃袃螆芃薅蚆肅節(jié)芅葿肁芁蕆螄羇芀蕿薇袃芀艿螃蝿艿莁薅肇羋蒄螁羃莇薆薄衿莆芆蝿螅蒞莈薂膄莄薀袇肀莄蚃蝕羆莃莂袆袂罿蒄蠆螈
3、羈薇襖肆肈芆蚇羂肇荿袂袈肆蒁蚅襖肅蚃蒈膃肄莃螃聿肅蒅薆羅肂薈螂袁肂芇薅螇膁莀螀肅膀蒂薃羈腿蚄螈羇膈莄薁袃膇蒆袇蝿膆薈蠆肈膆羋裊羄膅莀蚈袀芄蒃袃螆芃薅蚆肅節(jié)芅葿肁芁蕆螄羇芀蕿薇袃芀艿螃蝿艿莁薅肇羋蒄螁羃莇薆薄衿莆芆蝿螅蒞莈薂膄莄薀袇肀莄蚃蝕羆莃莂袆袂罿蒄蠆螈羈薇襖肆肈芆蚇羂肇荿袂袈肆蒁蚅襖肅蚃蒈膃肄莃螃聿肅蒅薆羅肂薈螂袁肂芇薅螇膁莀螀肅膀蒂薃羈腿蚄螈羇膈莄薁袃膇蒆袇蝿膆薈蠆肈膆羋裊羄膅莀蚈袀芄蒃袃螆芃薅蚆肅節(jié)芅葿肁芁蕆螄羇芀蕿薇袃芀艿螃蝿艿莁薅肇羋蒄螁羃莇薆薄衿莆芆蝿螅蒞莈薂膄莄薀袇肀莄蚃蝕羆莃莂袆袂罿蒄蠆螈羈薇襖肆肈芆蚇羂肇荿袂袈肆蒁蚅襖肅蚃蒈膃肄莃螃聿肅蒅薆羅肂薈螂袁肂芇薅螇膁莀螀肅膀蒂薃羈
4、腿蚄螈羇膈莄薁袃膇蒆袇蝿膆薈蠆肈膆羋裊羄膅莀蚈袀芄蒃袃螆芃薅蚆肅節(jié)芅葿肁芁蕆螄羇芀蕿薇袃芀艿螃蝿艿莁薅肇羋蒄螁羃莇薆薄衿莆芆蝿螅蒞莈薂膄莄薀袇肀莄蚃蝕羆莃莂袆袂罿蒄蠆螈羈薇襖肆肈芆蚇羂肇荿袂袈肆蒁蚅襖肅蚃蒈膃肄莃螃聿肅蒅薆羅肂薈螂袁肂芇薅螇膁莀螀肅膀蒂薃羈腿蚄螈羇膈莄薁袃膇蒆袇蝿膆薈蠆肈膆羋裊羄膅莀蚈袀芄蒃袃螆芃薅蚆肅節(jié)芅葿肁芁蕆螄羇芀蕿薇袃芀艿螃蝿艿莁薅肇羋蒄螁羃莇薆薄衿莆芆蝿螅蒞莈薂膄莄薀袇肀莄蚃蝕羆莃莂袆袂罿蒄蠆螈羈薇襖肆肈芆蚇羂肇荿袂袈肆蒁蚅襖肅蚃蒈膃肄莃螃聿肅蒅薆羅肂薈螂袁肂芇薅螇膁莀螀肅膀蒂薃羈腿蚄螈羇膈莄薁袃膇蒆袇蝿膆薈蠆肈膆羋裊羄膅莀蚈袀芄蒃袃螆芃薅蚆肅節(jié)芅葿肁芁蕆螄羇芀蕿薇袃
5、芀艿螃蝿艿莁薅肇羋蒄螁羃莇薆薄衿莆芆蝿螅蒞莈薂膄莄薀袇肀莄蚃蝕羆莃莂袆袂罿蒄蠆螈羈薇襖肆肈芆蚇羂肇荿袂袈肆蒁蚅襖肅蚃蒈膃肄莃螃聿肅蒅薆羅肂薈螂袁肂芇薅螇膁莀螀肅膀蒂薃羈腿蚄螈羇膈莄薁袃膇蒆袇蝿膆薈蠆肈膆羋裊羄膅莀蚈袀芄蒃袃螆芃薅蚆肅節(jié)芅葿肁芁蕆螄羇芀蕿薇袃芀艿螃蝿艿莁薅肇羋蒄螁羃莇薆薄衿莆芆蝿螅蒞莈薂膄莄薀袇肀莄蚃蝕羆莃莂袆袂罿蒄蠆螈羈薇襖肆肈芆蚇羂肇荿袂袈肆蒁蚅襖肅蚃蒈膃肄莃螃聿肅蒅薆羅肂薈螂袁肂芇薅螇膁莀螀肅膀蒂薃羈腿蚄螈羇膈莄薁袃膇蒆袇蝿膆薈蠆肈膆羋裊羄膅莀蚈袀芄蒃袃螆芃薅蚆肅節(jié)芅葿肁芁蕆螄羇芀蕿薇袃芀艿螃蝿艿莁薅肇羋蒄螁羃莇薆薄衿莆芆蝿螅蒞莈薂膄莄薀袇肀莄蚃蝕羆莃莂袆袂罿蒄蠆螈羈薇襖肆
6、肈芆蚇羂肇荿袂袈肆蒁蚅襖肅蚃蒈膃肄莃螃聿肅蒅薆羅肂薈螂袁肂芇薅螇膁莀螀肅膀蒂薃羈腿蚄螈羇膈莄薁袃膇蒆袇蝿膆薈蠆肈膆羋裊羄膅莀蚈袀芄蒃袃螆芃薅蚆肅節(jié)芅葿肁芁蕆螄羇芀蕿薇袃芀艿螃蝿艿莁薅肇羋蒄螁羃莇薆薄衿莆芆蝿螅蒞莈薂膄莄薀袇肀莄蚃蝕羆莃莂袆袂罿蒄蠆螈羈薇襖肆肈芆蚇羂肇荿袂袈肆蒁蚅襖肅蚃蒈膃肄莃螃聿肅蒅薆羅肂薈螂袁肂芇薅螇膁莀螀肅膀蒂薃羈腿蚄螈羇膈莄薁袃膇蒆袇蝿膆薈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀
7、薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁
8、蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞
9、葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆
10、薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀
11、螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁
12、蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂
13、蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆
14、螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇
15、蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁
16、薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)
17、蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆
18、蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇
19、蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈
20、螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂
21、蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃
22、蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆
23、螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁罿芇葿蒀蠆聿蒞葿螁芅芁蒈羄肈芇蒈肆羈薆蕆螆膆蒂蒆袈罿莈
24、蒅羀膄芄蒄蝕羇膀薃螂膃蒈薂裊羅莄薂肇膁莀薁螇肄芆薀衿艿膂蕿羈肂蒁薈蟻羋莇蚇螃肀芃蚆裊芆腿蚆羈聿薇蚅螇袁蒃蚄袀膇荿蚃羂羀芅螞螞膅膁蟻螄羈蒀螁袆膃莆螀罿羆節(jié)蝿蚈膂膈螈袁羅薆螇羃芀蒂螆肅肅莈螅螅羋芄莂袇肁膀莁 課程星級:★★★★★ 知能梳理 【橢圓】 一、橢圓的定義 1、橢圓的第一定義:平面內一個動點到兩個定點、的距離之和等于常數 ,這個動點的軌跡叫橢圓。這兩個定點叫橢圓的焦點,兩焦點的距離叫作橢圓的焦距。 注意:若,則動點的軌跡為線段; 若,則動點的軌跡無圖形。 二、橢圓的方程 1、橢圓的標準方程(端點為a、b,焦點為c) (1)當焦點在軸上時,橢圓的標準
25、方程:,其中; (2)當焦點在軸上時,橢圓的標準方程:,其中; 2、兩種標準方程可用一般形式表示: 或者 mx2+ny2=1 三、橢圓的性質(以為例) 1、對稱性: 對于橢圓標準方程:是以軸、軸為對稱軸的軸對稱圖形;并且是以原點為對稱中心的中心對稱圖形,這個對稱中心稱為橢圓的中心。 2、范圍: 橢圓上所有的點都位于直線和所圍成的矩形內,所以橢圓上點的坐標滿足,。 3、頂點: ①橢圓的對稱軸與橢圓的交點稱為橢圓的頂點。 ②橢圓與坐標軸的四個交點即為橢圓的四個頂點,坐標分別為,,,。 ③線段,分別叫做橢圓的長軸和短軸,,。和分別叫做橢圓的長半軸長和短半軸長。 4、離
26、心率: ① 橢圓的焦距與長軸長度的比叫做橢圓的離心率,用表示,記作。 ② 因為,所以的取值范圍是。 越接近1,則就越接近,從而越小,因此橢圓越扁; 反之,越接近于0,就越接近0,從而越接近于,這時橢圓就越接近于圓。 當且僅當時,,這時兩個焦點重合,圖形變?yōu)閳A,方程為。 ③ 離心率的大小只與橢圓本身的形狀有關,與其所處的位置無關。 注意:橢圓的圖像中線段的幾何特征(如下圖): 5、橢圓的第二定義: 平面內與一個定點(焦點)和一條定直線(準線)的距離的比為常數e,(0<e<1)的點的軌跡為橢圓()。 即:到焦點的距離與到準線的距
27、離的比為離心率的點所構成的圖形,也即上圖中有。 ①焦點在x軸上:(a>b>0)準線方程: ②焦點在y軸上:(a>b>0)準線方程: 6、橢圓的內外部 需要更多的高考數學復習資料,請在淘.寶.上.搜.索.寶.貝. “高考復習資料 高中數學 知識點總結 例題精講(詳細解答)” 或者搜.店.鋪..“龍奇跡【學習資料網】” (1)點在橢圓的內部 (2)點在橢圓的外部 四、橢圓的兩個標準方程的區(qū)別和聯系 標準方程 圖形 性質 焦點 , , 焦距 范圍 , , 對稱性 關于軸、軸和原點對稱 頂點 , , 軸長 長軸長=,短軸長=
28、 離心率 準線方程 焦半徑 , , 五、其他結論 需要更多的高考數學復習資料,請在淘.寶.上.搜.索.寶.貝. “高考復習資料 高中數學 知識點總結 例題精講(詳細解答)” 或者搜.店.鋪..“龍奇跡【學習資料網】” 1、若在橢圓上,則過的橢圓的切線方程是 2、若在橢圓外 ,則過Po作橢圓的兩條切線切點為P1、P2,則切點弦P1P2的直線方程是 3、橢圓 (a>b>0)的左右焦點分別為F1,F 2,點P為橢圓上任意一點,則橢圓的焦點角形的面積為 4、橢圓(a>b>0)的焦半徑公式:,( , ) 5、設過橢圓焦點F作直線與橢圓相交 P、Q兩點,A為橢圓長軸
29、上一個頂點,連結AP 和AQ分別交相應于焦點F的橢圓準線于M、N兩點,則MF⊥NF。 6、過橢圓一個焦點F的直線與橢圓交于兩點P、Q, A1、A2為橢圓長軸上的頂點,A1P和A2Q交于點M,A2P和A1Q交于點N,則MF⊥NF。 7、AB是橢圓的不平行于對稱軸的弦,M為AB的中點,則,即。 8、若在橢圓內,則被Po所平分的中點弦的方程是 9、若在橢圓內,則過Po的弦中點的軌跡方程是 【雙曲線】 一、雙曲線的定義 1、第一定義:到兩個定點F1與F2的距離之差的絕對值等于定長(<|F1F2|)的點的軌跡((為常數))。這兩個定點叫雙曲線的焦點。 要注意兩點:(1)距離之差的絕對
30、值。(2)2a<|F1F2|。 當|MF1|-|MF2|=2a時,曲線僅表示焦點F2所對應的一支; 當|MF1|-|MF2|=-2a時,曲線僅表示焦點F1所對應的一支; 當2a=|F1F2|時,軌跡是一直線上以F1、F2為端點向外的兩條射線; 當2a>|F1F2|時,動點軌跡不存在。 2、第二定義:動點到一定點F的距離與它到一條定直線l的距離之比是常數e(e>1)時,這個動點的軌跡是雙曲線。這定點叫做雙曲線的焦點,定直線l叫做雙曲線的準線。 二、雙曲線的標準方程(,其中||=2c) 需要更多的高考數學復習資料,請在淘.寶.上.搜.索.寶.貝. “高
31、考復習資料 高中數學 知識點總結 例題精講(詳細解答)” 或者搜.店.鋪..“龍奇跡【學習資料網】” 三、點與雙曲線的位置關系,直線與雙曲線的位置關系 1、點與雙曲線 2、直線與雙曲線 四、雙曲線與漸近線的關系 五、雙曲線與切線方程 六、雙曲線的性質 七、 弦長公式 1、若直線與圓錐曲線相交于兩點A、B,且分別為A、B的橫坐標, 則,, 若分別為A、B的縱坐標,則。 2、通徑的定義:過焦點且垂直于實軸的直線與雙曲線相交于A、B兩點,則弦長。 3、若弦AB所在直線方程設為,則=。 4、特別地,焦點弦的弦長的計算是將焦點弦轉化為兩條焦半徑之和后,利用第二定義求解 八、焦
32、半徑公式 九、等軸雙曲線 十、共軛雙曲線 需要雙曲線的詳細資料,請在淘.寶.上.搜.索.寶.貝. “高考復習資料 高中數學 知識點總結 例題精講(詳細解答)” 或者搜.店.鋪..“龍奇跡【學習資料網】” 【拋物線】 一、拋物線的概念 平面內與一定點F和一條定直線l (l不經過點F) 距離相等的點的軌跡叫做拋物線。定點F叫做拋物線的焦點,定直線l叫做拋物線的準線。 二、拋物線的性質 三、相關定義 1、通徑:過拋物線的焦點且垂直于對稱軸的弦H1H2稱為通徑;通徑:|H1H2|=2P 2、弦長公式: 3、焦點弦:過拋物線焦點的弦,若,則 (1) x0+, (2),-p2
33、 (3) 弦長,,即當x1=x2時,通徑最短為2p (4) 若AB的傾斜角為θ,則= (5)+= 四、點、直線與拋物線的位置關系 需要詳細的拋物線的資料,請在淘.寶.上.搜.索.寶.貝. “高考復習資料 高中數學 知識點總結 例題精講(詳細解答)” 或者搜.店.鋪..“龍奇跡【學習資料網】” 【圓錐曲線與方程】 一、圓錐曲線的統(tǒng)一定義 平面內的動點P(x,y)到一個定點F(c,0)的距離與到不通過這個定點的一條定直線的距離之比是一個常數e(e>0),則動點的軌跡叫做圓錐曲線。其中定點F(c,0)稱為焦點,定直線稱為準線,正常數e稱為離心率。 當0<e<1時,軌跡為橢圓;當e
34、=1時,軌跡為拋物線;當e>1時,軌跡為雙曲線。 特別注意:當時,軌跡為圓(,當時)。 二、橢圓、雙曲線、拋物線的標準方程與幾何性質 三、曲線與方程 四、坐標變換 1、坐標變換: 2、坐標軸的平移: 3、中心或頂點在(h,k)的圓錐曲線方程 需要更多的高考數學復習資料,請在淘.寶.上.搜.索.寶.貝. “高考復習資料 高中數學 知識點總結 例題精講(詳細解答)” 或者搜.店.鋪..“龍奇跡【學習資料網】” 精講精練 【例】以拋物線的焦點為右焦點,且兩條漸近線是的雙曲線方程為___________________. 解: 拋物線的焦點為,設雙曲線方
35、程為,,雙曲線方程為 【例】雙曲線=1(b∈N)的兩個焦點F1、F2,P為雙曲線上一點,|OP|<5,|PF1|,|F1F2|,|PF2|成等比數列,則b2=_________。 解:設F1(-c,0)、F2(c,0)、P(x,y),則|PF1|2+|PF2|2=2(|PO|2+|F1O|2)<2(52+c2),即|PF1|2+|PF2|2<50+2c2, 又∵|PF1|2+|PF2|2=(|PF1|-|PF2|)2+2|PF1||PF2|,依雙曲線定義,有|PF1|-|PF2|=4, 依已知條件有|PF1||PF2|=|F1F2|2=4c2 ∴16+8c2<50+2c2,∴c2<
36、, 又∵c2=4+b2<,∴b2<,∴b2=1。 【例】當取何值時,直線:與橢圓相切,相交,相離? 解: ①代入②得化簡得 當即時,直線與橢圓相切; 當,即時,直線與橢圓相交; 當,即或時,直線與橢圓相離。 【例】已知橢圓的中心在坐標原點,焦點在x軸上,它的一個焦點為F,M是橢圓上的任意點,|MF|的最大值和最小值的幾何平均數為2,橢圓上存在著以y=x為軸的對稱點M1和M2,且|M1M2|=,試求橢圓的方程。 解:|MF|max=a+c,|MF|min=a-c,則(a+c)(a-c)=a2-c2=b2, ∴b2=4,設橢圓方程為 ① 設過M1和M2
37、的直線方程為y=-x+m ② 將②代入①得:(4+a2)x2-2a2mx+a2m2-4a2=0 ③ 設M1(x1,y1)、M2(x2,y2),M1M2的中點為(x0,y0), 則x0= (x1+x2)=,y0=-x0+m=。 代入y=x,得, 由于a2>4,∴m=0,∴由③知x1+x2=0,x1x2=-,又|M1M2|=, 代入x1+x2,x1x2可解a2=5,故所求橢圓方程為: =1。 【例】某拋物線形拱橋跨度是20米,拱高4米,在建橋時每隔4米需用一支柱支撐,求其中最長的支柱的長。需要更多的高考數學復習資料,請在淘.寶.上.搜.索.寶.貝. “高
38、考復習資料 高中數學 知識點總結 例題精講(詳細解答)” 或者搜.店.鋪..“龍奇跡【學習資料網】” 解:以拱頂為原點,水平線為x軸,建立坐標系, 如圖,由題意知,|AB|=20,|OM|=4,A、B坐標分別為(-10,-4)、(10,-4) 設拋物線方程為x2=-2py,將A點坐標代入,得100=-2p(-4),解得p=12。5, 于是拋物線方程為x2=-25y。 由題意知E點坐標為(2,-4),E′點橫坐標也為2,將2代入得y=-0。16,從而|EE′|=(-0.16)-(-4)=3.84。 故最長支柱長應為3.84米。 【例】已知橢圓的中心在坐標原點O,焦點
39、在坐標軸上,直線y=x+1與橢圓交于P和Q,且OP⊥OQ,|PQ|=,求橢圓方程。 解:設橢圓方程為mx2+ny2=1(m>0,n>0),P(x1,y1),Q(x2,y2) 由 得(m+n)x2+2nx+n-1=0,Δ=4n2-4(m+n)(n-1)>0,即m+n-mn>0, 由OP⊥OQ,所以x1x2+y1y2=0,即2x1x2+(x1+x2)+1=0,∴+1=0,∴m+n=2 ① 又22,將m+n=2,代入得mn= ② 由①、②式得m=,n=或m=,n= 故橢圓方程為+y2=1或x2+y2=1。 【例】已知圓C1的方程為,橢圓C2的方程為,C2的離心率為,如果C1與C2相
40、交于A、B兩點,且線段AB恰為圓C1的直徑,求直線AB的方程和橢圓C2的方程。 解:由設橢圓方程為 設 又 兩式相減,得 又即 將 需要更多的高考數學復習資料,請在淘.寶.上.搜.索.寶.貝. “高考復習資料 高中數學 知識點總結 例題精講(詳細解答)” 或者搜.店.鋪..“龍奇跡【學習資料網】” 由得 解得 故所有橢圓方程 【例】過點(1,0)的直線l與中心在原點,焦點在x軸上且離心率為的橢圓C相交于A、B兩點,直線y=x過線段AB的中點,同時橢圓C上存在一點與右焦點關于直線l對稱,試求直線l與橢圓C的方程。 解法一:由e=,得,從而a2=2b
41、2,c=b。設橢圓方程為x2+2y2=2b2,A(x1,y1),B(x2,y2)在橢圓上。 則x12+2y12=2b2,x22+2y22=2b2,兩式相減得,(x12-x22)+2(y12-y22)=0, 設AB中點為(x0,y0),則kAB=-,又(x0,y0)在直線y=x上,y0=x0,于是-=-1,kAB=-1, 設l的方程為y=-x+1。右焦點(b,0)關于l的對稱點設為(x′,y′), 由點(1,1-b)在橢圓上,得1+2(1-b)2=2b2,b2=。 ∴所求橢圓C的方程為 =1,l的方程為y=-x+1。 解法二:需要更多的高考數學復習資料,請在淘.寶.上.搜.索.寶.貝
42、. “高考復習資料 高中數學 知識點總結 例題精講(詳細解答)” 或者搜.店.鋪..“龍奇跡【學習資料網】”由e=,從而a2=2b2,c=b。設橢圓C的方程為x2+2y2=2b2,l的方程為y=k(x-1), 將l的方程代入C的方程,得(1+2k2)x2-4k2x+2k2-2b2=0, 則x1+x2=,y1+y2=k(x1-1)+k(x2-1)=k(x1+x2)-2k=-。 直線l:y=x過AB的中點(),則,解得k=0,或k=-1。 若k=0,則l的方程為y=0,焦點F(c,0)關于直線l的對稱點就是F點本身,不能在橢圓C上,所以k=0舍去,從而k=-1,直線l的方程為y=-(x-1
43、),即y=-x+1,以下同解法一。 解法三:設橢圓方程為 直線不平行于y軸,否則AB中點在x軸上與直線中點矛盾。故可設直線 , ,,, ,, ,, ,,, ,, 則, ,, , 所以所求的橢圓方程為: 【例】如圖,已知△P1OP2的面積為,P為線段P1P2的一個三等分點,求以直線OP1、OP2為漸近線且過點P的離心率為的雙曲線方程。 解:以O為原點,∠P1OP2的角平分線為x軸建立如圖所示的直角坐標系。 設雙曲線方程為=1(a>0,b>0),由e2=,得。 ∴兩漸近線OP1、OP2方程分別為y=x和y=-x 設點P1(x1, x1),P2(
44、x2,-x2)(x1>0,x2>0), 則由點P分所成的比λ==2,得P點坐標為(), 又點P在雙曲線=1上,所以=1, 即(x1+2x2)2-(x1-2x2)2=9a2,整理得8x1x2=9a2 ① 即x1x2= ② 由①、②得a2=4,b2=9。 故雙曲線方程為=1。 【例】需要更多的高考數學復習資料,請在淘.寶.上.搜.索.寶.貝. “高考復習資料 高中數學 知識點總結 例題精講(詳細解答)” 或者搜.店.鋪..“龍奇跡【學習資料網】”過橢圓C:上一動點P引圓O:x2 +y2 =b2的兩條切線PA、PB,A、B為切點,直線AB與x軸,y軸分別交于M、N兩點
45、。(1) 已知P點坐標為(x0,y0 )并且x0y0≠0,試求直線AB方程;(2) 若橢圓的短軸長為8,并且,求橢圓C的方程;(3) 橢圓C上是否存在點P,由P向圓O所引兩條切線互相垂直?若存在,請求出存在的條件;若不存在,請說明理由。 解:(1)設A(x1,y1),B(x2, y2) 切線PA:,PB: ∵P點在切線PA、PB上,∴ ∴直線AB的方程為 (2)在直線AB方程中,令y=0,則M(,0);令x=0,則N(0,) ∴ ① ∵2b=8 ∴b=4 代入①得a2 =25, b2 =16 ∴橢圓C方程: (3) 假設存在點P(x0,y0)滿足PA⊥PB
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。