【初二數(shù)學(xué)】新人教版八年級(jí)數(shù)學(xué)下冊(cè)勾股定理知識(shí)點(diǎn)和典型例習(xí)題1(共8頁)
《【初二數(shù)學(xué)】新人教版八年級(jí)數(shù)學(xué)下冊(cè)勾股定理知識(shí)點(diǎn)和典型例習(xí)題1(共8頁)》由會(huì)員分享,可在線閱讀,更多相關(guān)《【初二數(shù)學(xué)】新人教版八年級(jí)數(shù)學(xué)下冊(cè)勾股定理知識(shí)點(diǎn)和典型例習(xí)題1(共8頁)(10頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、新人教版八年級(jí)下冊(cè)勾股定理全章知識(shí)點(diǎn)和典型例習(xí)題 1、 基礎(chǔ)知識(shí)點(diǎn): 1.勾股定理 內(nèi)容:直角三角形兩直角邊的平方和等于斜邊的平方; 表示方法:如果直角三角形的兩直角邊分別為,,斜邊為,那么 勾股定理的由來:勾股定理也叫商高定理,在西方稱為畢達(dá)哥拉斯定理.我國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦.早在三千多年前,周朝數(shù)學(xué)家商高就提出了“勾三,股四,弦五”形式的勾股定理,后來人們進(jìn)一步發(fā)現(xiàn)并證明了直角三角形的三邊關(guān)系為:兩直角邊的平方和等于斜邊的平方 2.勾股定理的證明 勾股定理的證明方法很多,常見的是拼圖的方法 用拼圖的方法驗(yàn)證勾股定理的思路
2、是 ①圖形進(jìn)過割補(bǔ)拼接后,只要沒有重疊,沒有空隙,面積不會(huì)改變 ②根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理 常見方法如下: 方法一:,,化簡可證. 方法二: 四個(gè)直角三角形的面積與小正方形面積的和等于大正方形的面積.四個(gè)直角三角形的面積與小正方形面積的和為 大正方形面積為 所以方法三:,,化簡得證 3. 勾股定理的適用范圍 勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關(guān)系,它只適用于直角三角形,對(duì)于銳角三角形和鈍角三角形的三邊就不具有這一特征,因而在應(yīng)用勾股定理時(shí),必須明了所考察的對(duì)象是直角三角形 4. 勾股定理的應(yīng)用①已知直角三
3、角形的任意兩邊長,求第三邊在中,,則,,②知道直角三角形一邊,可得另外兩邊之間的數(shù)量關(guān)系③可運(yùn)用勾股定理解決一些實(shí)際問題 5.勾股定理的逆定理 如果三角形三邊長,,滿足,那么這個(gè)三角形是直角三角形,其中為斜邊 ?、俟垂啥ɡ淼哪娑ɡ硎桥卸ㄒ粋€(gè)三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運(yùn)用這一定理時(shí),可用兩小邊的平方和與較長邊的平方作比較,若它們相等時(shí),以,,為三邊的三角形是直角三角形;若,時(shí),以,,為三邊的三角形是鈍角三角形;若,時(shí),以,,為三邊的三角形是銳角三角形; ②定理中,,及只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長,,滿足,
4、那么以,,為三邊的三角形是直角三角形,但是為斜邊 ?、酃垂啥ɡ淼哪娑ɡ碓谟脝栴}描述時(shí),不能說成:當(dāng)斜邊的平方等于兩條直角邊的平方和時(shí),這個(gè)三角形是直角三角形 6.勾股數(shù) ?、倌軌驑?gòu)成直角三角形的三邊長的三個(gè)正整數(shù)稱為勾股數(shù),即中,,,為正整數(shù)時(shí),稱,,為一組勾股數(shù) ②記住常見的勾股數(shù)可以提高解題速度,如;;;等 ③用含字母的代數(shù)式表示組勾股數(shù): ?。檎麛?shù)); (為正整數(shù))(,為正整數(shù))7.勾股定理的應(yīng)用 勾股定理能夠幫助我們解決直角三角形中的邊長的計(jì)算或直角三角形中線段之間的關(guān)系的證明問題.在使用勾股定理時(shí),必須把握直角三角形的前提條件,了解直角三角形中,斜邊和直角邊各
5、是什么,以便運(yùn)用勾股定理進(jìn)行計(jì)算,應(yīng)設(shè)法添加輔助線(通常作垂線),構(gòu)造直角三角形,以便正確使用勾股定理進(jìn)行求解. 8. .勾股定理逆定理的應(yīng)用 勾股定理的逆定理能幫助我們通過三角形三邊之間的數(shù)量關(guān)系判斷一個(gè)三角形是否是直角三角形,在具體推算過程中,應(yīng)用兩短邊的平方和與最長邊的平方進(jìn)行比較,切不可不加思考的用兩邊的平方和與第三邊的平方比較而得到錯(cuò)誤的結(jié)論. 9. 勾股定理及其逆定理的應(yīng)用 勾股定理及其逆定理在解決一些實(shí)際問題或具體的幾何問題中,是密不可分的一個(gè)整體.通常既要通過逆定理判定一個(gè)三角形是直角三角形,又要用勾股定理求出邊的長度,二者相輔相成,完成對(duì)問題的解決.常見圖形: 10
6、、互逆命題的概念 如果一個(gè)命題的題設(shè)和結(jié)論分別是另一個(gè)命題的結(jié)論和題設(shè),這樣的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。 二、經(jīng)典例題精講 題型一:直接考查勾股定理 例1.在中,. ?、乓阎?,.求的長 ⑵已知,,求的長分析:直接應(yīng)用勾股定理 解:⑴ ⑵ 題型二:利用勾股定理測(cè)量長度 例題1 如果梯子的底端離建筑物9米,那么15米長的梯子可以到達(dá)建筑物的高度是多少米? 解析:這是一道大家熟知的典型的“知二求一”的題。把實(shí)物模型轉(zhuǎn)化為數(shù)學(xué)模型后,.已知斜邊長和一條直角邊長,求另外一條直角邊的長度,可以直接利用勾股定理! 根據(jù)勾股定理AC2
7、+BC2=AB2, 即AC2+92=152,所以AC2=144,所以AC=12. 例題2 如圖(8),水池中離岸邊D點(diǎn)1.5米的C處,直立長著一根蘆葦,出水部分BC的長是0.5米,把蘆葦拉到岸邊,它的頂端B恰好落到D點(diǎn),并求水池的深度AC. 解析:同例題1一樣,先將實(shí)物模型轉(zhuǎn)化為數(shù)學(xué)模型,如圖2. 由題意可知△ACD中,∠ACD=90,在Rt△ACD中,只知道CD=1.5,這是典型的利用勾股定理“知二求一”的類型。 標(biāo)準(zhǔn)解題步驟如下(僅供參考): 解:如圖2,根據(jù)勾股定理,AC2+CD2=AD2 設(shè)水深A(yù)C= x米,那么AD=AB=AC+CB=x+0.5 x2+1.52=( x
8、+0.5)2 解之得x=2. 故水深為2米. 題型三:勾股定理和逆定理并用—— 例題3 如圖3,正方形ABCD中,E是BC邊上的中點(diǎn),F(xiàn)是AB上一點(diǎn),且那么△DEF是直角三角形嗎?為什么? 解析:這道題把很多條件都隱藏了,乍一看有點(diǎn)摸不著頭腦。仔細(xì)讀題會(huì)意可以發(fā)現(xiàn)規(guī)律,沒有任何條件,我們也可以開創(chuàng)條件,由可以設(shè)AB=4a,那么BE=CE=2 a,AF=3 a,BF= a,那么在Rt△AFD 、Rt△BEF和 Rt△CDE中,分別利用勾股定理求出DF,EF和DE的長,反過來再利用勾股定理逆定理去判斷△DEF是否是直角三角形。 詳細(xì)解題步驟如下: 解:設(shè)正方形ABCD的邊長為
9、4a,則BE=CE=2 a,AF=3 a,BF= a 在Rt△CDE中,DE2=CD2+CE2=(4a)2+(2 a)2=20 a2 同理EF2=5a2, DF2=25a2 在△DEF中,EF2+ DE2=5a2+ 20a2=25a2=DF2 ∴△DEF是直角三角形,且∠DEF=90. 注:本題利用了四次勾股定理,是掌握勾股定理的必練習(xí)題。 題型四:利用勾股定理求線段長度—— 例題4 如圖4,已知長方形ABCD中AB=8cm,BC=10cm,在邊CD上取一點(diǎn)E,將△ADE折疊使點(diǎn)D恰好落在BC邊上的點(diǎn)F,求CE的長. 解析:解題之前先弄清楚折疊中的不變量。合理設(shè)元是關(guān)鍵。 詳
10、細(xì)解題過程如下: 解:根據(jù)題意得Rt△ADE≌Rt△AEF ∴∠AFE=90, AF=10cm, EF=DE 設(shè)CE=xcm, 則DE=EF=CD-CE=8-x 在Rt△ABF中由勾股定理得: AB2+BF2=AF2,即82+BF2=102, ∴BF=6cm ∴CF=BC-BF=10-6=4(cm) 在Rt△ECF中由勾股定理可得: EF2=CE2+CF2,即(8-x) 2=x2+42 ∴64-16x+x2=2+16 ∴x=3(cm),即CE=3 cm 注:本題接下來還可以折痕的長度和求重疊部分的面積。 題型五:利用勾股定理逆定理判斷垂直—— 例題5 如圖5,王師
11、傅想要檢測(cè)桌子的表面AD邊是否垂直與AB邊和CD邊,他測(cè)得AD=80cm,AB=60cm,BD=100cm,AD邊與AB邊垂直嗎?怎樣去驗(yàn)證AD邊與CD邊是否垂直? 解析:由于實(shí)物一般比較大,長度不容易用直尺來方便測(cè)量。我們通常截取部分長度來驗(yàn)證。如圖4,矩形ABCD表示桌面形狀,在AB上截取AM=12cm,在AD上截取AN=9cm(想想為什么要設(shè)為這兩個(gè)長度?),連結(jié)MN,測(cè)量MN的長度。 ①如果MN=15,則AM2+AN2=MN2,所以AD邊與AB邊垂直; ②如果MN=a≠15,則92+122=81+144=225, a2≠225,即92+122≠ a2,所以∠A不是直角。利用勾股定
12、理解決實(shí)際問題—— 例題6 有一個(gè)傳感器控制的燈,安裝在門上方,離地高4.5米的墻上,任何東西只要移至5米以內(nèi),燈就自動(dòng)打開,一個(gè)身高1.5米的學(xué)生,要走到離門多遠(yuǎn)的地方燈剛好打開? 解析:首先要弄清楚人走過去,是頭先距離燈5米還是腳先距離燈5米,可想而知應(yīng)該是頭先距離燈5米。轉(zhuǎn)化為數(shù)學(xué)模型,如圖6 所示,A點(diǎn)表示控制燈,BM表示人的高度,BC∥MN,BC⊥AN當(dāng)頭(B點(diǎn))距離A有5米時(shí),求BC的長度。已知AN=4.5米,所以AC=3米,由勾股定理,可計(jì)算BC=4米.即使要走到離門4米的時(shí)候燈剛好打開。 題型六:旋轉(zhuǎn)問題: 例1、如圖,△ABC是直角三角形,BC是斜邊,將△ABP繞點(diǎn)A
13、逆時(shí)針旋轉(zhuǎn)后,能與△ACP′重合,若AP=3,求PP′的長。 變式1:如圖,P是等邊三角形ABC內(nèi)一點(diǎn),PA=2,PB=,PC=4,求△ABC的邊長. 分析:利用旋轉(zhuǎn)變換,將△BPA繞點(diǎn)B逆時(shí)針選擇60,將三條線段集中到同一個(gè)三角形中, 根據(jù)它們的數(shù)量關(guān)系,由勾股定理可知這是一個(gè)直角三角形. 變式2、如圖,△ABC為等腰直角三角形,∠BAC=90,E、F是BC上的點(diǎn),且∠EAF=45, 試探究間的關(guān)系,并說明理由. 題型七:關(guān)于翻折問題 例1、如圖,矩形紙片ABCD的邊AB=10cm,BC=6cm,E為BC上一點(diǎn),將矩形紙片沿AE折疊,點(diǎn)B恰好落在CD邊上的點(diǎn)G處,求B
14、E的長. 變式:如圖,AD是△ABC的中線,∠ADC=45,把△ADC沿直線AD翻折,點(diǎn)C落在點(diǎn)C’的位置,BC=4,求BC’的長. 題型八:關(guān)于勾股定理在實(shí)際中的應(yīng)用: 例1、如圖,公路MN和公路PQ在P點(diǎn)處交匯,點(diǎn)A處有一所中學(xué),AP=160米,點(diǎn)A到公路MN的距離為80米,假使拖拉機(jī)行駛時(shí),周圍100米以內(nèi)會(huì)受到噪音影響,那么拖拉機(jī)在公路MN上沿PN方向行駛時(shí),學(xué)校是否會(huì)受到影響,請(qǐng)說明理由;如果受到影響,已知拖拉機(jī)的速度是18千米/小時(shí),那么學(xué)校受到影響的時(shí)間為多少? 題型九:關(guān)于最短性問題 例5、如右圖1-19,壁虎在一
15、座底面半徑為2米,高為4米的油罐的下底邊沿A處,它發(fā)現(xiàn)在自己的正上方油罐上邊緣的B處有一只害蟲,便決定捕捉這只害蟲,為了不引起害蟲的注意,它故意不走直線,而是繞著油罐,沿一條螺旋路線,從背后對(duì)害蟲進(jìn)行突然襲擊.結(jié)果,壁虎的偷襲得到成功,獲得了一頓美餐.請(qǐng)問壁虎至少要爬行多少路程才能捕到害蟲?(π取3.14,結(jié)果保留1位小數(shù),可以用計(jì)算器計(jì)算)變式:如圖為一棱長為3cm的正方體,把所有面都分為9個(gè)小正方形,其邊長都是1cm,假設(shè)一只螞蟻每秒爬行2cm,則它從下地面A點(diǎn)沿表面爬行至右側(cè)面的B點(diǎn),最少要花幾秒鐘? 三、課后訓(xùn)練: 一、填空題 C O A B D E F 第3題圖
16、 D B C A 第4題圖 1.如圖(1),在高2米,坡角為30的樓梯表面鋪地毯,地毯的長至少需________米. 圖(1) 2.種盛飲料的圓柱形杯(如圖),測(cè)得內(nèi)部底面半徑為2.5㎝,高為12㎝,吸管放進(jìn)杯里,杯口外面至少要露出4.6㎝,問吸管要做 ㎝。 3.已知:如圖,△ABC中,∠C = 90,點(diǎn)O為△ABC的三條角平分線的交點(diǎn),OD⊥BC,OE⊥AC,OF⊥AB,點(diǎn)D、E、F分別是垂足,且BC = 8cm,CA = 6cm,則點(diǎn)O到三邊AB,AC和BC的距離分別等于 cm 4.在一棵樹的10米高處有兩只猴子,一只猴子爬下樹走到離樹20米處的池
17、塘的A處。另一只爬到樹頂D后直接躍到A處,距離以直線計(jì)算,如果兩只猴子所經(jīng)過的距離相等,則這棵樹高_(dá)____________________米。 5.如圖是一個(gè)三級(jí)臺(tái)階,它的每一級(jí)的長寬和高分別為20dm、3dm、 2dm,A和B是這個(gè)臺(tái)階兩個(gè)相對(duì)的端點(diǎn),A點(diǎn)有一只螞蟻,想到B 點(diǎn)去吃可口的食物,則螞蟻沿著臺(tái)階面爬到B點(diǎn)最短路程是_____________. 二、選擇題 1.已知一個(gè)Rt△的兩邊長分別為3和4,則第三邊長的平方是( ?。? A、25 B、14 C、7 D、7或25 2.Rt△一直角邊的長為11,另兩邊為自然數(shù),則Rt△的周長為( ?。?
18、 A、121 B、120 C、132 D、不能確定 3.如果Rt△兩直角邊的比為5∶12,則斜邊上的高與斜邊的比為( ?。? A、60∶13 B、5∶12 C、12∶13 D、60∶169 4.已知Rt△ABC中,∠C=90,若a+b=14cm,c=10cm,則Rt△ABC的面積是( ?。? A、24cm2 B、36cm2 C、48cm2 D、60cm2 5.等腰三角形底邊上的高為8,周長為32,則三角形的面積為( ?。? A、56 B、48 C、40 D、32 A B E F D C 第7題圖 6.某
19、市在舊城改造中,計(jì)劃在市內(nèi)一塊如圖所示的三角形空地上種植草皮以美化環(huán)境,已知這種草皮每平方米售價(jià)a元,則購買這種草皮至少需要( ?。? A、450a元 B、225a 元 C、150a元 D、300a元 150 20m 30m 第6題圖 7.已知,如圖長方形ABCD中,AB=3cm,AD=9cm,將此長方形折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF,則△ABE的面積為( ?。? A、6cm2 B、8cm2 C、10cm2 D、12cm2 8.在△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長為 A.42 B.32
20、 C.42或32 D.37或33 9. 如圖,正方形網(wǎng)格中的△ABC,若小方格邊長為1,則△ABC是 ( ) (A)直角三角形 (B)銳角三角形 (C)鈍角三角形 (D)以上答案都不對(duì) 三、計(jì)算 1、如圖,A、B是筆直公路l同側(cè)的兩個(gè)村莊,且兩個(gè)村莊到直路的距離分別是300m和500m,兩村莊之間的距離為d(已知d2=400000m2),現(xiàn)要在公路上建一汽車??空?,使兩村到??空镜木嚯x之和最小。問最小是多少? 2、如圖1-3-11,有一塊塑料矩形模板ABCD,長為10cm,寬為4cm,將你手中足夠大的直角三角板 PHF 的直角頂點(diǎn)P落在AD邊上
21、(不與A、D重合),在AD上適當(dāng)移動(dòng)三角板頂點(diǎn)P: ①能否使你的三角板兩直角邊分別通過點(diǎn)B與點(diǎn)C?若能,請(qǐng)你求出這時(shí) AP 的長;若不能,請(qǐng)說明理由. ②再次移動(dòng)三角板位置,使三角板頂點(diǎn)P在AD上移動(dòng),直角邊PH 始終通過點(diǎn)B,另一直角邊PF與DC的延長線交于點(diǎn)Q,與BC交于點(diǎn)E,能否使CE=2cm?若能,請(qǐng)你求出這時(shí)AP的長;若不能,請(qǐng)你說明理由. 四、思維訓(xùn)練: 1、如圖所示是從長為40cm、寬為30cm的矩形鋼板的左上角截取一塊長為20cm,寬為10cm的矩形后,剩下的一塊下腳料。工人師傅要將它做適當(dāng)?shù)那懈?,重新拼接后焊成一個(gè)面積與原下腳料的面
22、積相等,接縫盡可能短的正方形工件,請(qǐng)根據(jù)上述要求,設(shè)計(jì)出將這塊下腳料適當(dāng)分割成三塊或三塊以上的兩種不同的拼接方案(在圖2,3中分別畫出切割時(shí)所沿的虛線,以及拼接后所得到的正方形,保留拼接的痕跡)。 2、葛藤是一種刁鉆的植物,它自己腰桿不硬,為了爭(zhēng)奪雨露陽光,常常饒著樹干盤旋而上,它還有一手絕招,就是它繞樹盤升的路線,總是沿著短路線—盤旋前進(jìn)的。難道植物也懂得數(shù)學(xué)嗎? 如果閱讀以上信息,你能設(shè)計(jì)一種方法解決下列問題嗎? 如果樹的周長為3cm,繞一圈升高4cm,則它爬行路程是多少厘米? 如果樹的周長為8cm,繞一圈爬行10cm,則爬行一圈升高多少厘米?如果
23、爬行10圈到達(dá)樹頂,則樹干高多少厘米? 3、在,△ABC中,∠ACB=90,CD⊥AB于D,求證:。 1 過兩點(diǎn)有且只有一條直線 2 兩點(diǎn)之間線段最短 3 同角或等角的補(bǔ)角相等 4 同角或等角的余角相等 5 過一點(diǎn)有且只有一條直線和已知直線垂直 6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短 7 平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內(nèi)錯(cuò)角相等,兩直線平行 11 同旁內(nèi)角互補(bǔ),兩直線平行 12兩直線平行,同位角相等
24、13 兩直線平行,內(nèi)錯(cuò)角相等 14 兩直線平行,同旁內(nèi)角互補(bǔ) 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180 18 推論1 直角三角形的兩個(gè)銳角互余 19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等 24 推論(AAS) 有
25、兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等 25 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等 27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等 28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推
26、論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60 34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊) 35 推論1 三個(gè)角都相等的三角形是等邊三角形 36 推論 2 有一個(gè)角等于60的等腰三角形是等邊三角形 37 在直角三角形中,如果一個(gè)銳角等于30那么它所對(duì)的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上 41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有
27、點(diǎn)的集合 42 定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形 43 定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線 44定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長線相交,那么交點(diǎn)在對(duì)稱軸上 45逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個(gè)三角形是直角三角形 48定理 四邊形的內(nèi)角和等于360 49四邊形的
28、外角和等于360 50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)180 51推論 任意多邊的外角和等于360 52平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等 53平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線互相平分 56平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形 60矩形性質(zhì)定理1 矩形的四個(gè)角都是直角
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025《增值稅法》高質(zhì)量發(fā)展的增值稅制度規(guī)范增值稅的征收和繳納
- 深入學(xué)習(xí)《中華人民共和國科學(xué)技術(shù)普及法》推進(jìn)實(shí)現(xiàn)高水平科技自立自強(qiáng)推動(dòng)經(jīng)濟(jì)發(fā)展和社會(huì)進(jìn)步
- 激揚(yáng)正氣淬煉本色踐行使命廉潔從政黨課
- 加強(qiáng)廉潔文化建設(shè)夯實(shí)廉政思想根基培育風(fēng)清氣正的政治生態(tài)
- 深入學(xué)習(xí)2024《突發(fā)事件應(yīng)對(duì)法》全文提高突發(fā)事件預(yù)防和應(yīng)對(duì)能力規(guī)范突發(fā)事件應(yīng)對(duì)活動(dòng)保護(hù)人民生命財(cái)產(chǎn)安全
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)第一輪單元滾動(dòng)復(fù)習(xí)第10天平行四邊形和梯形作業(yè)課件新人教版
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)第14單元階段性綜合復(fù)習(xí)作業(yè)課件新人教版
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)易錯(cuò)清單十五課件新人教版
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)易錯(cuò)清單七課件西師大版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)易錯(cuò)清單六作業(yè)課件北師大版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)易錯(cuò)清單二作業(yè)課件北師大版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)四分?jǐn)?shù)的意義和性質(zhì)第10課時(shí)異分母分?jǐn)?shù)的大小比較作業(yè)課件蘇教版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)周周練四作業(yè)課件北師大版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)六折線統(tǒng)計(jì)圖單元復(fù)習(xí)卡作業(yè)課件西師大版
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)6除數(shù)是兩位數(shù)的除法單元易錯(cuò)集錦一作業(yè)課件新人教版