2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線試題 理.doc
《2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線試題 理.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線試題 理.doc(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線試題 理 xx xx xx xx 3 2 3 【xx新課標(biāo)I版(理)4】已知為雙曲線:的一個(gè)焦點(diǎn),則點(diǎn)到的一條漸近線的距離為( ) A. B. 3 C. D. 【答案】A 【xx新課標(biāo)I版(理)10】已知拋物線C:的焦點(diǎn)為F,準(zhǔn)線為,P是上一點(diǎn),Q是直線PF與C得一個(gè)焦點(diǎn),若,則( ) A. B. C. D. 【答案】B 【xx新課標(biāo)I版(理)4】已知雙曲線C:(a>0,b>0)的離心率為,則C的漸近線方程為( ). A.y= B.y= C.y= D.y=x 【答案】C 【xx新課標(biāo)I版(理)10】已知橢圓E:(a>b>0)的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交E于A,B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為( ). A. B. C. D. 【答案】:D 【xx全國,理4】設(shè)F1,F(xiàn)2是橢圓E:(a>b>0)的左、右焦點(diǎn),P為直線上一點(diǎn),△F2PF1是底角為30的等腰三角形,則E的離心率為( ) A. B. C. D. 【答案】C 【xx新課標(biāo)I版(理)8】等軸雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,C與拋物線y2=16x的準(zhǔn)線交于A,B兩點(diǎn),,則C的實(shí)軸長為( ) A. B. C.4 D.8 【答案】C 【xx新課標(biāo)I版(理)20】(本小題滿分12分) 已知點(diǎn)A,橢圓E:的離心率為;F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn) (I)求E的方程; (II)設(shè)過點(diǎn)A的動(dòng)直線與E 相交于P,Q兩點(diǎn)。當(dāng)?shù)拿娣e最大時(shí),求的直線方程. 【答案】 【xx新課標(biāo)I版(理)20】設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A為C上一點(diǎn),已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn). (1)若∠BFD=90,△ABD的面積為,求p的值及圓F的方程; (2)若A,B,F(xiàn)三點(diǎn)在同一直線m上,直線n與m平行,且n與C只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到m,n距離的比值. 【答案】 (1)由對稱性知:是等腰直角,斜邊 點(diǎn)到準(zhǔn)線的距離 圓的方程為 (2)由對稱性設(shè),則 點(diǎn)關(guān)于點(diǎn)對稱得: 得:,直線 切點(diǎn) 直線 坐標(biāo)原點(diǎn)到距離的比值為。 .(河北省邯鄲市xx屆高三上學(xué)期摸底考試數(shù)學(xué)(理)試題)已知分別是雙曲線的左右焦點(diǎn),若關(guān)于漸近線的對稱點(diǎn)為,且有,則此雙曲線的離心率為 ( ) A. B. C. D.2 【答案】D .(河北省高陽中學(xué)xx屆高三上學(xué)期第一次月考數(shù)學(xué)(理)試題)已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上,拋物線上的點(diǎn)P(m,-2)到焦點(diǎn)的距離為4,則m的值為 ( ?。? A.4 B.-2 C.4或-4 D.12或-2 【答案】C .(河北省唐山市xx屆高三摸底考試數(shù)學(xué)(理)試題)已知雙曲線=1(a>0,b>0)的左、右焦點(diǎn)分別為Fl,F2,以為直徑的圓與雙曲線漸近線的一個(gè)交點(diǎn)為(3,4),則此雙曲線的方程為 ( ?。? A. B. C. D. 【答案】C .(河北省邯鄲市武安三中xx屆高三第一次摸底考試數(shù)學(xué)理試題)已知拋物線關(guān)于軸對稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn)O,且經(jīng)過點(diǎn)M(2,)若點(diǎn)M到焦點(diǎn)的距離為3,則= ( ?。? A. B. C.4 D. 【答案】B (河南省安陽市xx屆高三第一次調(diào)研)拋物線=2px(p>0)的焦點(diǎn)為F,已知點(diǎn)A,B為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足 ∠AFB=90.過弦AB的中點(diǎn)M作拋物線準(zhǔn)線的垂線MN,垂足為N,則的最 大值為 A. B. C.1 D. 答案:A .(河北省高陽中學(xué)xx屆高三上學(xué)期第一次月考數(shù)學(xué)(理)試題)、是雙曲線的焦點(diǎn),點(diǎn)P在雙曲線上,若點(diǎn)P到焦點(diǎn)的距離等于9,則點(diǎn)P到焦點(diǎn)的距離等于________. 【答案】17 .(河北省唐山市xx屆高三摸底考試數(shù)學(xué)(理)試題)拋物線y2=2px (p>0)的準(zhǔn)線截圓x2+y2-2y-1=0所得弦長為2,則p=_____________. 【答案】2 .(河北省張家口市蔚縣一中xx屆高三一輪測試數(shù)學(xué)試題)橢圓()的左焦點(diǎn)為F,直線與橢圓相交于A,B兩點(diǎn),若的周長最大時(shí),的面積為,則橢圓的離心率為________. 【答案】 .(河北省邯鄲市xx屆高三上學(xué)期摸底考試數(shù)學(xué)(理)試題)已知為拋物線的焦點(diǎn),是拋物線上一個(gè)動(dòng)點(diǎn),則的最小值為_______. 【答案】3 .(河北省邯鄲市xx屆高三上學(xué)期摸底考試數(shù)學(xué)(理)試題)已知定點(diǎn),是圓上的動(dòng)點(diǎn),的垂直平分線與交于點(diǎn),設(shè)點(diǎn)的軌跡為. (1)求的方程; (2)是否存在斜率為1的直線,使得與曲線相交于兩點(diǎn),且以為直徑的圓恰好經(jīng)過原點(diǎn)?若存在,求出直線的方程;若不存在,請說明理由. 【答案】解:(1)由題知,所以 又因?yàn)?所以點(diǎn)的軌跡是以為焦點(diǎn),長軸長為的橢圓. 故動(dòng)點(diǎn)的軌跡方程為. (2)假設(shè)存在符合題意的直線與橢圓相交于兩點(diǎn),其方程為 由消去,化簡得. 因?yàn)橹本€與橢圓C相交于A,B兩點(diǎn), 所以, 化簡得,解得 所以,. 因?yàn)橐跃€段AB為直徑的圓恰好經(jīng)過原點(diǎn), 所以,所以 又, , 解得 由于, 所以符合題意的直線存在,所求的直線的方程為 或 .(河北省容城中學(xué)xx屆高三上學(xué)期第一次月考數(shù)學(xué)(理)試題)已知點(diǎn)A(-2,0),B(2,0),直線PA與直線PB的斜率之積為記點(diǎn)P的軌跡為曲線C. (1)求曲線C的方程. (2)設(shè)M,N是曲線C上任意兩點(diǎn),且問是否存在以原點(diǎn)為圓心且與MN總相切的圓?若存在,求出該圓的方程;若不存在,請說明理由. 【答案】(1)設(shè)P(x,y) 解得直線MN的方程為 ∴原點(diǎn)O到直線MN的距離d= . 若直線MN斜率存在,設(shè)方程為y=kx+m. 由得(4k2+3)x2+8kmx+4m2-12=0. ∴ .(河北省正定中學(xué)xx屆高三上學(xué)期第一次月考數(shù)學(xué)試題)已知橢圓的一個(gè)焦點(diǎn)是,且離心率為. (1)求橢圓的方程; (2)設(shè)經(jīng)過點(diǎn)的直線交橢圓于兩點(diǎn),線段的垂直平分線交軸于點(diǎn),求的取值范圍. 【答案】(1)設(shè)橢圓的半焦距是依題意,得 因?yàn)闄E圓的離心率為,所以故橢圓的方程為 (2)當(dāng)軸時(shí),顯然當(dāng)與軸不垂直時(shí),可設(shè)直線的方程為 由消去并整理得 設(shè)線段的中點(diǎn)為 則 所以 線段的垂直平分線的方程為 在上述方程中,令x=0,得 當(dāng)時(shí),當(dāng)時(shí), 所以或 綜上,的取值范圍是 .(河北省唐山市xx屆高三摸底考試數(shù)學(xué)(理)試題)已知點(diǎn)M是橢圓C:=1(a>b>0)上一點(diǎn),F1、F2分別為C的左、右焦點(diǎn),|F1F2|=4, ∠F1MF2 =60o,∠F1 MF2的面積為 (I)求橢圓C的方程; ( II)設(shè)N(0,2),過點(diǎn)p(-1,-2)作直線l,交橢圓C異于N的A、B兩點(diǎn),直線NA、NB的斜率分別為k1、k2,證明:k1+k2為定值. 【答案】 .(河北省保定市八校聯(lián)合體xx屆高三上學(xué)期第一次月考數(shù)學(xué)(理科)試題)已知橢圓C的中點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,離心率等于,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn). (1)求橢圓C的方程; (2)點(diǎn)P(2,3),Q(2,-3)在橢圓上,A、B是橢圓上位 于直線PQ兩側(cè)的動(dòng)點(diǎn), (i)若直線AB的斜率為,求四邊形APBQ面積的最大值; (ii)當(dāng)A、B運(yùn)動(dòng)時(shí),滿足∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請說明理由. 【答案】解:(1)設(shè)橢圓的方程為,則. 由,得 ∴橢圓C的方程為 (2)(i)解:設(shè),直線的方程為, 代入,得 由,解得 由韋達(dá)定理得. 四邊形的面積 ∴當(dāng), (ii)解:當(dāng),則、的斜率之和為0,設(shè)直線的斜率為 則的斜率為,的直線方程為 由 (1)代入(2)整理得 同理的直線方程為,可得 ∴ 所以的斜率為定值 .(河北省高陽中學(xué)xx屆高三上學(xué)期第一次月考數(shù)學(xué)(理)試題)已知,橢圓C過點(diǎn)A,兩個(gè)焦點(diǎn)為(-1,0),(1,0). (1)求橢圓C的方程; (2)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值. 【答案】解:(1)由題意c=1,由定義|F1A|+|F2A| =+=4=2a, ∴a=2,∴b=,∴橢圓方程為+=1 (2)設(shè)直線AE方程為:y=k(x-1)+,代入+=1 得(3+4k2)x2+4k(3-2k)x+42-12=0 設(shè)E(xE,yE),F(xF,yF),因?yàn)辄c(diǎn)A在橢圓上, 所以xE=,yE=kxE+-k 又直線AF的斜率與AE的斜率互為相反數(shù),在上式中以-k代k, 可得xF=,yF=-kxF++k 所以直線EF的斜率 kEF===, 即直線EF的斜率為定值,其值為 .(河北省邯鄲市武安三中xx屆高三第一次摸底考試數(shù)學(xué)理試題)已知橢圓,橢圓以的長軸為短軸,且與有相同的離心率. (I)求橢圓的方程. (II)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A.B分別在橢圓C1和C2上,,求直線AB的方程. 【答案】解:(1)橢圓的長軸長為4,離心率為 ∵橢圓C2以C1的長軸為短軸,且與C1有相同的離心率 ∴橢圓C2的焦點(diǎn)在y軸上,2b=4,為 ∴b=2,a=4 ∴橢圓C2的方程為; (2)設(shè)A,B的坐標(biāo)分別為(xA,yA),(xB,yB), ∵ ∴O,A,B三點(diǎn)共線,且點(diǎn)A,B不在y軸上 ∴設(shè)AB的方程為y=kx 將y=kx代入,消元可得(1+4k2)x2=4,∴ 將y=kx代入,消元可得(4+k2)x2=16,∴ ∵,∴=4, ∴,解得k=1, ∴AB的方程為y=x- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線試題 2019 2020 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 圓錐曲線 試題
鏈接地址:http://m.italysoccerbets.com/p-3211485.html