(浙江專用)2020版高考數(shù)學(xué)一輪總復(fù)習(xí) 專題7 不等式 7.3 簡(jiǎn)單的線性規(guī)劃課件.ppt
《(浙江專用)2020版高考數(shù)學(xué)一輪總復(fù)習(xí) 專題7 不等式 7.3 簡(jiǎn)單的線性規(guī)劃課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專用)2020版高考數(shù)學(xué)一輪總復(fù)習(xí) 專題7 不等式 7.3 簡(jiǎn)單的線性規(guī)劃課件.ppt(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
高考數(shù)學(xué)(浙江專用),7.3簡(jiǎn)單的線性規(guī)劃,考點(diǎn)簡(jiǎn)單的線性規(guī)劃,考點(diǎn)清單,考向基礎(chǔ)1.二元一次不等式表示平面區(qū)域二元一次不等式Ax+By+C>0在平面直角坐標(biāo)系中表示直線Ax+By+C=0某一側(cè)所有點(diǎn)組成的平面區(qū)域.把直線畫成①虛線以表示區(qū)域不包括邊界.當(dāng)在坐標(biāo)系中畫不等式Ax+By+C≥0所表示的平面區(qū)域時(shí),此區(qū)域應(yīng)包括邊界,則把邊界直線畫成②實(shí)線.2.線性規(guī)劃中的基本概念,【知識(shí)拓展】1.判斷Ax+By+C≥0表示的平面區(qū)域在直線的哪一側(cè)的方法:(1)當(dāng)C≠0時(shí),取原點(diǎn)(0,0),當(dāng)原點(diǎn)坐標(biāo)使Ax+By+C≥0成立時(shí),就是含原點(diǎn)的區(qū)域;不成立時(shí),就是不含原點(diǎn)的區(qū)域.(2)當(dāng)C=0時(shí),取(0,1)或(1,0),當(dāng)不等式成立時(shí),就是含所取點(diǎn)的一側(cè);不成立時(shí),是另一側(cè).2.線性目標(biāo)函數(shù)z=Ax+By的最值與B的符號(hào)的關(guān)系當(dāng)B>0時(shí),直線過(guò)可行域且在y軸上截距最大時(shí),z值最大;在y軸上截距最小時(shí),z值最小.當(dāng)B<0時(shí),直線過(guò)可行域且在y軸上截距最小時(shí),z值最大;在y軸上截距最大時(shí),z值最小.3.利用圖解法解決線性規(guī)劃問題的一般步驟,(1)作出可行域.將約束條件中的每一個(gè)不等式當(dāng)作等式,作出相應(yīng)的直線,并確定原不等式表示的半平面,然后求出所有半平面的交集;(2)作出目標(biāo)函數(shù)的等值線;(3)求出最終結(jié)果.在可行域內(nèi)平行移動(dòng)目標(biāo)函數(shù)等值線,從圖中能判定問題有唯一最優(yōu)解,或者有無(wú)窮最優(yōu)解,或者無(wú)最優(yōu)解.,方法1目標(biāo)函數(shù)最值問題的求解方法1.求目標(biāo)函數(shù)的最值的步驟:①畫出可行域;②根據(jù)目標(biāo)函數(shù)的幾何意義確定取得最優(yōu)解的點(diǎn);③求出目標(biāo)函數(shù)的最大值或最小值.2.常見的目標(biāo)函數(shù):①截距型:形如z=ax+by,可以轉(zhuǎn)化為y=-x+,利用直線在y軸上的截距大小確定目標(biāo)函數(shù)的最值;②距離型:形如z=(x-a)2+(y-b)2,表示區(qū)域內(nèi)的動(dòng)點(diǎn)(x,y)與定點(diǎn)(a,b)連線的距離的平方;③斜率型:形如z=,表示區(qū)域內(nèi)的動(dòng)點(diǎn)(x,y)與定點(diǎn)(a,b)連線的斜率.,方法技巧,例1(2018浙江9+1高中聯(lián)盟期中,4)已知x,y滿足約束條件若2x+y≥m恒成立,則m的取值范圍是()A.m≥3B.m≤3C.m≤D.m≤,解題導(dǎo)引,解析作出滿足約束條件的可行域(如圖所示).平移直線2x+y=0到過(guò)點(diǎn)A時(shí),2x+y取最小值,為,,∵2x+y≥m恒成立,∴m≤(2x+y)min,即m≤,故選D.,答案D,方法2線性規(guī)劃中參變量問題的求解方法含參變量的線性規(guī)劃問題,參變量的設(shè)置有兩種形式:(1)條件不等式組中含有參變量,由于不能明確可行域的形狀,因此,增加了解題時(shí)畫圖分析的難度,求解這類問題時(shí)要有全局觀念,結(jié)合目標(biāo)函數(shù)逆向分析題意,整體把握解題的方法;(2)目標(biāo)函數(shù)中設(shè)置參變量,旨在增加探索問題的動(dòng)態(tài)性和開放性.從目標(biāo)函數(shù)的結(jié)論入手,對(duì)圖形的動(dòng)態(tài)分析,對(duì)變化過(guò)程中的相關(guān)量的準(zhǔn)確定位,是求解這類問題的主要思維方法.,解析如圖,作出可行域,可知要使得目標(biāo)函數(shù)達(dá)到最小,直線z=3x+y必定過(guò)點(diǎn)A,此時(shí)3x+y=1,聯(lián)立得方程組解得即A,代入x-ky=0,可得k=,故選C.,答案C,評(píng)析本題由于含有參數(shù),可行域不好確定,解題的關(guān)鍵在于將目標(biāo)函數(shù)取得的最小值“反客為主”,當(dāng)作已知條件逆向代入解得結(jié)果.,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 浙江專用2020版高考數(shù)學(xué)一輪總復(fù)習(xí) 專題7 不等式 7.3 簡(jiǎn)單的線性規(guī)劃課件 浙江 專用 2020 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 專題 簡(jiǎn)單 線性規(guī)劃 課件
鏈接地址:http://m.italysoccerbets.com/p-3270346.html