中考數(shù)學(xué)一輪復(fù)習(xí) 第六章 圖形的變化 第31講 圖形的相似課件.ppt
《中考數(shù)學(xué)一輪復(fù)習(xí) 第六章 圖形的變化 第31講 圖形的相似課件.ppt》由會員分享,可在線閱讀,更多相關(guān)《中考數(shù)學(xué)一輪復(fù)習(xí) 第六章 圖形的變化 第31講 圖形的相似課件.ppt(31頁珍藏版)》請在裝配圖網(wǎng)上搜索。
圖形的相似,第三十一講,第六章圖形的變化,知識盤點,1、比和比例的有關(guān)概念2.比例的基本性質(zhì)及定理3.平行線分線段成比例定理4.相似三角形的定義、判定及性質(zhì)5、相似多邊形的性質(zhì)6、位似圖形,難點與易錯點,(3)由于運(yùn)用三點定形法時常會碰到三點共線或四點中沒有相同點的情況,此時可考慮運(yùn)用等線、等比或等積進(jìn)行變換后,再考慮運(yùn)用三點定形法尋找相似三角形,這種方法就是等量代換法.在證明比例式時,常常要用到中間比.3.判定兩個三角形相似的技巧:(1)先找兩對對應(yīng)角相等,一般這個條件比較簡單;(2)若只能找到一對對應(yīng)角相等,則判斷相等角的兩夾邊是否對應(yīng)成比例;(3)若找不到角相等,就判斷三邊是否對應(yīng)成比例;(4)若題目出現(xiàn)平行線,則直接運(yùn)用基本定理得出相似的三角形.,4.五種基本思路(1)條件中若有平行線,可采用相似三角形的基本定理;(2)條件中若有一對等角,可再找一對等角或再找夾邊成比例;(3)條件中若有兩邊對應(yīng)成比例,可找夾角相等;(4)條件中若有一對直角,可考慮再找一對等角或證明斜邊、直角邊對應(yīng)成比例;(5)條件中若有等腰三角形,可找頂角相等,或找一對底角相等,或找底和腰對應(yīng)成比例.,C,1.(2015眉山)如圖,AD∥BE∥CF,直線l1、l2與這三條平行線分別交于點A,B,C和點D,E,F(xiàn).已知AB=1,BC=3,DE=2,則EF的長為()A.4B.5C.6D.8,D,夯實基礎(chǔ),B,3.(2015銅仁)如圖,在平行四邊形ABCD中,點E在邊DC上,DE∶EC=3∶1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為()A.3∶4B.9∶16C.9∶1D.3∶14.(2015營口)如圖,△ABE和△CDE是以點E為位似中心的位似圖形,已知點A(3,4),點C(2,2),點D(3,1),則點D的對應(yīng)點B的坐標(biāo)是()A.(4,2)B.(4,1)C.(5,2)D.(5,1),C,B,5.(2015南通)如圖,AB為⊙O的直徑,C為⊙O上一點,弦AD平分∠BAC,交BC于點E,AB=6,AD=5,則AE的長為()A.2.5B.2.8C.3D.3.2,類型一:比例的基本性質(zhì)、黃金分割,D,【點評】此題考查了比例的性質(zhì).此題比較簡單,解題的關(guān)鍵是注意掌握比例的性質(zhì)與比例變形.,典例探究,A,類型二:三角形相似的性質(zhì)及判定,【例2】(2015湘潭)如圖,在Rt△ABC中,∠C=90,△ACD沿AD折疊,使得點C落在斜邊AB上的點E處.(1)求證:△BDE∽△BAC;(2)已知AC=6,BC=8,求線段AD的長度.,解:證明:(1)∵∠C=90,△ACD沿AD折疊,∴∠C=∠AED=90,∴∠DEB=∠C=90,∵∠B=∠B,∴△BDE∽△BAC,【點評】本題考查了相似三角形的判定和性質(zhì),關(guān)鍵是根據(jù)(1)、折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等;(2)、勾股定理求解.,類型三:相似三角形綜合問題,【點評】本題考查的是相似三角形的判定與性質(zhì)、圓內(nèi)接四邊形的性質(zhì)以及垂徑定理,根據(jù)題意判斷出△PAD∽△PCB是解答此題的關(guān)鍵.,類型四:相似多邊形與位似圖形,【例4】(2015漳州)如圖,在1010的正方形網(wǎng)格中,點A,B,C,D均在格點上,以點A為位似中心畫四邊形AB′C′D′,使它與四邊形ABCD位似,且位似比為2.(1)在圖中畫出四邊形AB′C′D′;(2)填空:△AC′D′是___________三角形.,解:(1)如圖所示(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案為等腰直角,等腰直角,【點評】畫位似圖形的一般步驟為:①確定位似中心,②分別連接并延長位似中心和能代表原圖的關(guān)鍵點;③根據(jù)相似比,確定能代表所作的位似圖形的關(guān)鍵點;順次連接上述各點,得到放大或縮小的圖形.同時考查了勾股定理及其逆定理等知識.熟練掌握網(wǎng)格結(jié)構(gòu)以及位似變換的定義是解題的關(guān)鍵.,解:(1)證明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD,審題視角三角形內(nèi)從兩個頂點出發(fā),分別與其對邊相交的線段,它們又相交于一點.這時,三角形的兩邊、上述兩條相交線段均被有關(guān)分點分成不同的線段比,這些線段的比之間存在相互依存和制約的關(guān)系,知道其中任意兩條線段被分點分成的比,就可以求出其他任一線段被分點所分成的比.這一問題的解決辦法,主要是利用平行線(作輔助線).輔助線的作法:主要是過三角形邊上的點作欲求分比線段的平行線,構(gòu)成兩對相似三角形.本題可以過點E作EG∥CD交AB于點G,則有△BEG∽△BCD,△ADO∽△AGE.本題也可過點D作AE的平行線,同樣也可以求得相關(guān)的比值.,答題思路第一步:審題,理解問題,清楚問題中的已知條件與未知結(jié)論;第二步:過三角形邊上的點作欲求分比線段的平行線,構(gòu)成兩對相似三角形;第三步:根據(jù)相似三角形的性質(zhì),得出與欲求分比線段相關(guān)聯(lián)的兩線段的比值;第四步:根據(jù)比例的性質(zhì)逐步求得欲求分比線段的比值;第五步:反思回顧,查看關(guān)鍵點、易錯點,完善解題步驟.,易錯:,剖析(1)此題中,Rt△ABC與Rt△ADC中,∠ACB=∠ADC=90,∠B可能與∠ACD相等,也可能與∠CAD相等,三角形△ABC與△ADC相似可能是△ABC∽△ACD或△ABC∽△CAD.根據(jù)對應(yīng)邊成比例,有兩種情況需要分類討論.(2)分類討論在幾何中的應(yīng)用也很廣泛,可以說整個平面幾何的知識結(jié)構(gòu)貫穿了分類討論的思想方法.(3)在解題過程中,不僅要掌握問題中的條件與結(jié)論,還要在推理的過程中不斷地發(fā)現(xiàn)題目中的隱含條件,以便全面、正確、迅速地解決問題.忽視已知條件,實質(zhì)上是對概念理解不詳、把握不準(zhǔn)的表現(xiàn).,- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 中考數(shù)學(xué)一輪復(fù)習(xí) 第六章 圖形的變化 第31講 圖形的相似課件 中考 數(shù)學(xué) 一輪 復(fù)習(xí) 第六 圖形 變化 31 相似 課件
鏈接地址:http://m.italysoccerbets.com/p-3840263.html