《高中數(shù)學(xué) 課時(shí)分層作業(yè)18 獨(dú)立性檢驗(yàn)的基本思想及其初步應(yīng)用 新人教A版選修23》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 課時(shí)分層作業(yè)18 獨(dú)立性檢驗(yàn)的基本思想及其初步應(yīng)用 新人教A版選修23(6頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、
課時(shí)分層作業(yè)(十八)獨(dú)立性檢驗(yàn)的基本思想及其初步應(yīng)用
(建議用時(shí):40分鐘)
[基礎(chǔ)達(dá)標(biāo)練]
一、選擇題
1.分類變量X和Y的列聯(lián)表如下:
y1
y2
總計(jì)
x1
a
b
a+b
x2
c
d
c+d
總計(jì)
a+c
b+d
a+b+c+d
則下列說法正確的是( )
A.a(chǎn)b-bc越小,說明X與Y關(guān)系越弱
B.a(chǎn)d-bc越大,說明X與Y關(guān)系越強(qiáng)
C.(ad-bc)2越大,說明X與Y關(guān)系越強(qiáng)
D.(ad-bc)2越接近于0,說明X與Y關(guān)系越強(qiáng)
C [|ad-bc|越小,說明X與Y關(guān)系越弱,|ad-bc|越大,說明X與Y關(guān)系越強(qiáng).]
2.
2、下列關(guān)于等高條形圖的敘述正確的是( )
【導(dǎo)學(xué)號(hào):95032247】
A.從等高條形圖中可以精確地判斷兩個(gè)分類變量是否有關(guān)系
B.從等高條形圖中可以看出兩個(gè)變量頻數(shù)的相對大小
C.從等高條形圖中可以粗略地看出兩個(gè)分類變量是否有關(guān)系
D.以上說法都不對
C [在等高條形圖中僅能粗略判斷兩個(gè)分類變量的關(guān)系,故A錯(cuò).在等高條形圖中僅能夠找出頻率,無法找出頻數(shù),故B錯(cuò).]
3.通過對K2的統(tǒng)計(jì)量的研究得到了若干個(gè)臨界值,當(dāng)K2≤2.706時(shí),我們認(rèn)為( )
A.在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為X與Y有關(guān)系
B.在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為X與Y有關(guān)系
C.
3、沒有充分理由認(rèn)為X與Y有關(guān)系
D.不能確定
C [∵K2≤2.706,∴沒有充分理由認(rèn)為X與Y有關(guān)系.]
4.下面是調(diào)查某地區(qū)男女學(xué)生喜歡理科的等高條形圖,陰影部分表示喜歡理科的百分比,從圖324中可以看出( )
圖324
A.性別與喜歡理科無關(guān)
B.女生中喜歡理科的比為80%
C.男生比女生喜歡理科的可能性大些
D.男生不喜歡理科的比為60%
C [由題圖知女生中喜歡理科的比為20%,男生不喜歡理科的比為40%,故A,B,D錯(cuò)誤,C正確.男生比女生喜歡理科的可能性大些.]
5.假設(shè)有兩個(gè)變量X與Y,它們的取值分別為x1,x2和y1,y2,其列聯(lián)表為:
y1
4、y2
總計(jì)
x1
a
b
a+b
x2
c
d
c+d
總計(jì)
a+c
b+d
a+b+c+d
以下各組數(shù)據(jù)中,對于同一樣本能說明X與Y有關(guān)系的可能性最大的一組為( )
A.a(chǎn)=50,b=40,c=30,d=20
B.a(chǎn)=50,b=30,c=40,d=20
C.a(chǎn)=20,b=30,c=40,d=50
D.a(chǎn)=20,b=30,c=50,d=40
D [當(dāng)(ad-bc)2的值越大,隨機(jī)變量K2=的值越大,可知X與Y有關(guān)系的可能性就越大.顯然選項(xiàng)D中,(ad-bc)2的值最大.]
二、填空題
6.在對某小學(xué)的學(xué)生進(jìn)行吃零食的調(diào)查中,得到如下表數(shù)據(jù):
吃
5、零食
不吃零食
總計(jì)
男學(xué)生
27
34
61
女學(xué)生
12
29
41
總計(jì)
39
63
102
根據(jù)上述數(shù)據(jù)分析,我們得出的K2的觀測值k約為________.
【導(dǎo)學(xué)號(hào):95032248】
2.334 [由公式可計(jì)算得k=≈2.334.]
7.在獨(dú)立性檢驗(yàn)中,統(tǒng)計(jì)量K2有兩個(gè)臨界值:3.841和6.635.當(dāng)K2>3.841時(shí),有95%的把握說明兩個(gè)事件有關(guān),當(dāng)K2>6.635時(shí),有99%的把握說明兩個(gè)事件有關(guān),當(dāng)K2≤3.841時(shí),認(rèn)為兩個(gè)事件無關(guān).在一項(xiàng)打鼾與患心臟病的調(diào)查中,共調(diào)查了2 000人,經(jīng)計(jì)算K2=20.87.根據(jù)這一數(shù)據(jù)分析,我們有
6、理由認(rèn)為打鼾與患心臟病之間是________的(有關(guān)、無關(guān)).
有關(guān) [K2=20.87>6.635,我們有99%的把握認(rèn)為兩者有關(guān).]
8.下列關(guān)于K2的說法中,正確的有________.
①K2的值越大,兩個(gè)分類變量的相關(guān)性越大;
②K2的計(jì)算公式是K2=;
③若求出K2=4>3.841,則有95%的把握認(rèn)為兩個(gè)分類變量有關(guān)系,即有5%的可能性使得“兩個(gè)分類變量有關(guān)系”的推斷出現(xiàn)錯(cuò)誤;
④獨(dú)立性檢驗(yàn)就是選取一個(gè)假設(shè)H0條件下的小概率事件,若在一次試驗(yàn)中該事件發(fā)生了,這是與實(shí)際推斷相抵觸的“不合理”現(xiàn)象,則作出拒絕H0的推斷.
③④ [對于①,K2的值越大,只能說明我們有更大的
7、把握認(rèn)為二者有關(guān)系,卻不能判斷相關(guān)性大小,故①錯(cuò)誤;對于②,(ad-bc)應(yīng)為(ad-bc)2,故②錯(cuò);根據(jù)獨(dú)立性檢驗(yàn)的概念和臨界值表知③,④正確.]
三、解答題
9.為了研究子女吸煙與父母吸煙的關(guān)系,調(diào)查了一千多名青少年及其家長,數(shù)據(jù)如下:
父母吸煙
父母不吸煙
總計(jì)
子女吸煙
237
83
320
子女不吸煙
678
522
1 200
總計(jì)
915
605
1 520
利用等高條形圖判斷父母吸煙對子女吸煙是否有影響?
[解] 等高條形圖如圖所示:
由圖形觀察可以看出父母吸煙者中子女吸煙的比例要比父母不吸煙者中子女吸煙的比例高,因此可以在某種
8、程度上認(rèn)為“子女吸煙與父母吸煙有關(guān)系”.
10.有人發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象,中國人的郵箱里含有數(shù)字比較多,而外國人郵箱名稱里含有數(shù)字比較少,為了研究國籍和郵箱名稱里含有數(shù)字的關(guān)系,他收集了124個(gè)郵箱名稱,其中中國人的64個(gè),外國人的60個(gè),中國人的郵箱中有43個(gè)含數(shù)字,外國人的郵箱中有27個(gè)含數(shù)字.
(1)根據(jù)以上數(shù)據(jù)建立22列聯(lián)表;
(2)他發(fā)現(xiàn)在這組數(shù)據(jù)中,外國人郵箱里含數(shù)字的也不少,他不能斷定國籍和郵箱名稱里含有數(shù)字是否有關(guān),你能幫他判斷一下嗎?
【導(dǎo)學(xué)號(hào):95032249】
[解] (1)22的列聯(lián)表:
中國人
外國人
總計(jì)
有數(shù)字
43
27
70
無數(shù)
9、字
21
33
54
總計(jì)
64
60
124
(2)假設(shè)“國籍和郵箱名稱里與是否含有數(shù)字無關(guān)”.
由表中數(shù)據(jù)得k=≈6.201.
因?yàn)閗>5.024,所以有理由認(rèn)為假設(shè)“國籍和郵箱名稱里與是否含有數(shù)字無關(guān)”是不合理的,即在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為“國籍和郵箱名稱里與是否含有數(shù)字有關(guān)”.
[能力提升練]
一、選擇題
1.觀察下列各圖,其中兩個(gè)分類變量x,y之間關(guān)系最強(qiáng)的是( )
A B
C D
D [在四幅圖中,D圖中兩個(gè)深色條的高相差最明顯,說明兩個(gè)分類變量之間關(guān)系最強(qiáng).]
2.某研究所為
10、了檢驗(yàn)?zāi)逞孱A(yù)防感冒的作用,把500名使用了該血清的志愿者與另外500名未使用該血清的志愿者一年中的感冒記錄作比較,提出假設(shè)H:“這種血清不能起到預(yù)防感冒的作用”,利用22列聯(lián)表計(jì)算得K2≈3.918,經(jīng)查臨界值表知P(K2≥3.841)≈0.05.則下列敘述中正確的是( )
【導(dǎo)學(xué)號(hào):95032250】
A.有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”
B.若有人未使用該血清,那么他一年中有95%的可能性得感冒
C.這種血清預(yù)防感冒的有效率為95%
D.這種血清預(yù)防感冒的有效率為5%
A [K2≈3.918>3.841,因此有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作
11、用”,故選A.]
二、填空題
3.某班主任對全班50名學(xué)生作了一次調(diào)查,所得數(shù)據(jù)如表:
認(rèn)為作業(yè)多
認(rèn)為作業(yè)不多
總計(jì)
喜歡玩電腦游戲
18
9
27
不喜歡玩電腦游戲
8
15
23
總計(jì)
26
24
50
由表中數(shù)據(jù)計(jì)算得到K2的觀測值k≈5.059,于是________(填“能”或“不能”)在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)多有關(guān).
不能 [查表知若要在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)多有關(guān),則臨界值k0=6.635,本題中,k≈5.059<6.635,所以不能在犯錯(cuò)誤的概率不超過0.0
12、1的前提下認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)多有關(guān).]
4.為研究某新藥的療效,給100名患者服用此藥,跟蹤調(diào)查后得下表中的數(shù)據(jù):
無效
有效
總計(jì)
男性患者
15
35
50
女性患者
6
44
50
總計(jì)
21
79
100
設(shè)H:服用此藥的效果與患者的性別無關(guān),則K2的觀測值k≈________(小數(shù)點(diǎn)后保留一位有效數(shù)字),從而得出結(jié)論:服用此藥的效果與患者的性別有關(guān),這種判斷出錯(cuò)的可能性為________.
4.9 5% [由公式計(jì)算得K2的觀測值k≈4.9.∵k>3.841,∴我們有95%的把握認(rèn)為服用此藥的效果與患者的性別有關(guān),從而有5%的可能性出
13、錯(cuò).]
三、解答題
5.隨著生活水平的提高,人們患肝病的越來越多,為了解中年人患肝病與經(jīng)常飲酒是否有關(guān),現(xiàn)對30名中年人進(jìn)行了問卷調(diào)查得到如下列聯(lián)表:
常飲酒
不常飲酒
合計(jì)
患肝病
2
不患肝病
18
合計(jì)
30
已知在全部30人中隨機(jī)抽取1人,抽到肝病患者的概率為.
(1)請將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有99.5%的把握認(rèn)為患肝病與常飲酒有關(guān)?說明你的理由;
(2)現(xiàn)從常飲酒且患肝病的中年人(恰有2名女性)中,抽取2人參加電視節(jié)目,則正好抽到一男一女的概率是多少?
參考數(shù)據(jù):
P(K2≥k)
0.15
0.10
0.0
14、5
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
【導(dǎo)學(xué)號(hào):95032251】
[解] (1)設(shè)患肝病中常飲酒的人有x人,=,x=6.
常飲酒
不常飲酒
合計(jì)
患肝病
6
2
8
不患肝病
4
18
22
合計(jì)
10
20
30
由已知數(shù)據(jù)可求得
K2=≈8.523>7.879,
因此有99.5%的把握認(rèn)為患肝病與常飲酒有關(guān).
(2)設(shè)常飲酒且患肝病的男性為A,B,C,D,女性為E,F(xiàn),則任取兩人有AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15種.其中一男一女有AE,AF,BE,BF,CE,CF,DE,DF,共8種.故抽出一男一女的概率是P=.
我國經(jīng)濟(jì)發(fā)展進(jìn)入新常態(tài),需要轉(zhuǎn)變經(jīng)濟(jì)發(fā)展方式,改變粗放式增長模式,不斷優(yōu)化經(jīng)濟(jì)結(jié)構(gòu),實(shí)現(xiàn)經(jīng)濟(jì)健康可持續(xù)發(fā)展進(jìn)區(qū)域協(xié)調(diào)發(fā)展,推進(jìn)新型城鎮(zhèn)化,推動(dòng)城鄉(xiāng)發(fā)展一體化因:我國經(jīng)濟(jì)發(fā)展還面臨區(qū)域發(fā)展不平衡、城鎮(zhèn)化水平不高、城鄉(xiāng)發(fā)展不平衡不協(xié)調(diào)等現(xiàn)實(shí)挑戰(zhàn)。