《高中數(shù)學人教A版必修四 第二章 平面向量 第二章 章末檢測B含答案》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學人教A版必修四 第二章 平面向量 第二章 章末檢測B含答案(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
人教版高中數(shù)學必修精品教學資料
第二章 平面向量(B)
(時間:120分鐘 滿分:150分)
一、選擇題(本大題共12小題,每小題5分,共60分)
1.已知向量a=(4,2),b=(x,3),且a∥b,則x的值是( )
A.-6 B.6 C.9 D.12
2.下列命題正確的是( )
A.單位向量都相等
B.若a與b共線,b與c共線,則a與c共線
C.若|a+b|=|a-b|,則a·b=0
D.若a與b都是單位向量,則a·b=1.
3.設(shè)向量a=(m-2,m+3),b=(2m+1,m-2),若a與b的
2、夾角大于90°,則實數(shù)m的取值范圍是( )
A.(-,2)
B.(-∞,-)∪(2,+∞)
C.(-2,)
D.(-∞,2)∪(,+∞)
4.平行四邊形ABCD中,AC為一條對角線,若=(2,4),=(1,3),則·等于( )
A.8 B.6 C.-8 D.-6
5.已知|a|=1,|b|=6,a·(b-a)=2,則向量a與向量b的夾角是( )
A. B. C. D.
6.關(guān)于平面向量a,b,c,有下列四個命題:
①若a∥b,a≠0,則存在λ∈R,使得b=
3、λa;
②若a·b=0,則a=0或b=0;
③存在不全為零的實數(shù)λ,μ使得c=λa+μb;
④若a·b=a·c,則a⊥(b-c).
其中正確的命題是( )
A.①③ B.①④ C.②③ D.②④
7.已知|a|=5,|b|=3,且a·b=-12,則向量a在向量b上的投影等于( )
A.-4 B.4 C.- D.
8.設(shè)O,A,M,B為平面上四點,=λ+(1-λ)·,且λ∈(1,2),則( )
A.點M在線段AB上
B.點B在線段AM上
4、C.點A在線段BM上
D.O,A,B,M四點共線
9.P是△ABC內(nèi)的一點,=(+),則△ABC的面積與△ABP的面積之比為( )
A. B.2 C.3 D.6
10.在△ABC中,=2,=2,若=m+n,則m+n等于( )
A. B. C. D.1
11.已知3a+4b+5c=0,且|a|=|b|=|c|=1,則a·(b+c)等于( )
A.- B.- C.0 D.
12.定義平面向量之間的一種運算“⊙”如下:對任意的a=(m,n),b
5、=(p,q),令a⊙b=mq-np.下面說法錯誤的是( )
A.若a與b共線,則a⊙b=0
B.a(chǎn)⊙b=b⊙a
C.對任意的λ∈R,有(λa)⊙b=λ(a⊙b)
D.(a⊙b)2+(a·b)2=|a|2|b|2
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
二、填空題(本大題共4小題,每小題5分,共20分)
13.設(shè)向量a=(1,2),b=(2,3),若向量λa+b與向量c=(-4,-7)共線,則λ=________.
14.a(chǎn),b的夾角為120°,|a|=1,|
6、b|=3,則|5a-b|=________.
15.已知向量a=(6,2),b=(-4,),直線l過點A(3,-1),且與向量a+2b垂直,則直線l的方程為________.
16.已知向量=(2,1),=(1,7),=(5,1),設(shè)M是直線OP上任意一點(O為坐標原點),則·的最小值為________.
三、解答題(本大題共6小題,共70分)
17.(10分)如圖所示,以向量=a,=b為邊作?AOBD,又=,=,用a,b表示、、.
18.(12分)已知a,b的夾角為120°,且|a|=4,|b|=2,
求:(1)(a-2
7、b)·(a+b);
(2)|a+b|;
(3)|3a-4b|.
19.(12分)已知a=(,-1),b=,且存在實數(shù)k和t,使得x=a+(t2-3)b,y=-ka+tb,且x⊥y,試求的最小值.
20.(12分)設(shè)=(2,5),=(3,1),=(6,3).在線段OC上是否存在點M,使MA⊥MB?若存在,求出點M的坐標;若不存在,請說明理由.
21.(12分)設(shè)兩個向量e1、e2滿足|e1|=2,|e2|=1,e1、e2的夾角為60°
8、;,若向量2te1+7e2與e1+te2的夾角為鈍角,求實數(shù)t的取值范圍.
22.(12分)已知線段PQ過△OAB的重心G,且P、Q分別在OA、OB上,設(shè)=a,=b,=ma,=nb.
求證:+=3.
第二章 平面向量(B)
答案
1.B [∵a∥b,∴4×3-2x=0,∴x=6.]
2.C [∵|a+b|2=a2+b2+2a·b |a-b|2=a2+b2-2a·b |a+b|=|a-b|.∴a·b=0.]
3.A [∵a與b的夾角大于90°,∴a·b&
9、lt;0,∴(m-2)(2m+1)+(m+3)(m-2)<0,即3m2-2m-8<0,∴-<m<2.]
4.A [∵==-=(-1,-1),∴=-=(-1,-1)-(2,4)=(-3,-5),
∴·=(-1,-1)·(-3,-5)=8.]
5.C [∵a(b-a)=a·b-|a|2=2,∴a·b=3,∴cos〈a,b〉===,∴〈a,b〉=.]
6.B [由向量共線定理知①正確;若a·b=0,則a=0或b=0或a⊥b,所以②錯誤;在a,b能夠作為基底時,對平面上任意向量,存在實數(shù)λ,μ使得c=λa+μb,所以③錯
10、誤;若a·b=a·c,則a(b-c)=0,所以a⊥(b-c),所以④正確,即正確命題序號是①④.]
7.A [向量a在向量b上的投影為|a|cos〈a,b〉=|a|·==-=-4.]
8.B [∵=λ+(1-λ)=+λ(-)∴=λ,λ∈(1,2),∴點B在線段AM上,故選B.]
9.C [設(shè)△ABC邊BC的中點為D,則==.
∵=(+)=,∴=,∴||=||.∴=3.]
10.B [=+=+=+(-)=+故有m+n=+=.]
11.B [由已知得4b=-3a-5c,將等式兩邊平方得(4b)2=(-3a-5c)2,化簡得a·c=-.同理由5c=
11、-3a-4b兩邊平方得a·b=0,∴a·(b+c)=a·b+a·c=-.]
12.B [若a=(m,n)與b=(p,q)共線,則mq-np=0,依運算“⊙”知a⊙b=0,故A正確.由于a⊙b=mq-np,又b⊙a=np-mq,因此a⊙b=-b⊙a,故B不正確.對于C,由于λa=(λm,λn),因此(λa)⊙b=λmq-λnp,又λ(a⊙b)=λ(mq-np)=λmq-λnp,故C正確.對于D,(a⊙b)2+(a·b)2=m2q2-2mnpq+n2p2+(mp+nq)2=m2(p2+q2)+n2(p2+q2)=(m2+n2)(p2+q2)=|a
12、|2|b|2,故D正確.]
13.2
解析 ∵a=(1,2),b=(2,3),
∴λa+b=(λ,2λ)+(2,3)=(λ+2,2λ+3).
∵向量λa+b與向量c=(-4,-7)共線,
∴-7(λ+2)+4(2λ+3)=0.
∴λ=2.
14.7
解析 ∵|5a-b|2=(5a-b)2=25a2+b2-10a·b=25×12+32-10×1×3×(-)=49.
∴|5a-b|=7.
15.2x-3y-9=0
解析 設(shè)P(x,y)是直線上任意一點,根據(jù)題意,有·(a+2b)=(x-3,y+1)·(-2,
13、3)=0,整理化簡得2x-3y-9=0.
16.-8
解析 設(shè)=t=(2t,t),故有·=(1-2t,7-t)·(5-2t,1-t)=5t2-20t+12=5(t-2)2-8,故當t=2時,·取得最小值-8.
17.解?。剑絘-b.∴=+=+=+=a+b.
又=a+b.=+=+==a+b,
∴=-=a+b-a-b=a-b.
18.解 a·b=|a||b|cos 120°=4×2×=-4.
(1)(a-2b)·(a+b)=a2-2a·b+a·b-2b2=42-2×(-4)
14、+(-4)-2×22=12.
(2)∵|a+b|2=(a+b)2=a2+2a·b+b2=16+2×(-4)+4=12.
∴|a+b|=2.
(3)|3a-4b|2=9a2-24a·b+16b2=9×42-24×(-4)+16×22=16×19,
∴|3a-4b|=4.
19.解 由題意有|a|==2,|b|==1.
∵a·b=×-1×=0,∴a⊥b.
∵x·y=0,∴[a+(t2-3)b](-ka+tb)=0.化簡得k=.
∴=(t2+4t-3)=(t+2)2
15、-.即t=-2時,有最小值為-.
20.解 設(shè)=t,t∈[0,1],則=(6t,3t),即M(6t,3t).=-=(2-6t,5-3t),
=-=(3-6t,1-3t).若MA⊥MB,則·=(2-6t)(3-6t)+(5-3t)(1-3t)=0.即45t2-48t+11=0,t=或t=.∴存在點M,M點的坐標為(2,1)或.
21.解 由向量2te1+7e2與e1+te2的夾角為鈍角,
得<0,
即(2te1+7e2)·(e1+te2)<0.
整理得:2te+(2t2+7)e1·e2+7te<0.(*)
∵|e1|=2,|e2|=1
16、,〈e1,e2〉=60°.
∴e1·e2=2×1×cos 60°=1
∴(*)式化簡得:2t2+15t+7<0.解得:-7<t<-.
當向量2te1+7e2與e1+te2夾角為180°時,設(shè)2te1+7e2=λ(e1+te2) (λ<0).
對比系數(shù)得,∴
∴所求實數(shù)t的取值范圍是∪.
22.
證明 如右圖所示,
∵=(+)=(a+b),
∴==(a+b).
∴=-=(a+b)-ma=(-m)a+b.
=-=nb-ma.
又P、G、Q三點共線,
所以存在一個實數(shù)λ,使得=λ.
∴(-m)a+b=λnb-λma,
∴(-m+λm)a+(-λn)b=0.
∵a與b不共線,
∴
由①②消去λ得:+=3.