高中數(shù)學(xué)蘇教版必修一 第三章指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù) 3.2.2二 課時作業(yè)含答案

上傳人:仙*** 文檔編號:41971097 上傳時間:2021-11-24 格式:DOC 頁數(shù):5 大?。?21.50KB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué)蘇教版必修一 第三章指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù) 3.2.2二 課時作業(yè)含答案_第1頁
第1頁 / 共5頁
高中數(shù)學(xué)蘇教版必修一 第三章指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù) 3.2.2二 課時作業(yè)含答案_第2頁
第2頁 / 共5頁
高中數(shù)學(xué)蘇教版必修一 第三章指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù) 3.2.2二 課時作業(yè)含答案_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué)蘇教版必修一 第三章指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù) 3.2.2二 課時作業(yè)含答案》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)蘇教版必修一 第三章指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù) 3.2.2二 課時作業(yè)含答案(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 精品資料 3.2.2 對數(shù)函數(shù)(二) 課時目標 1.進一步加深理解對數(shù)函數(shù)的性質(zhì).2.掌握對數(shù)函數(shù)的性質(zhì)及其應(yīng)用. 1.設(shè)g(x)=,則g(g())=________. 2.下列各組函數(shù)中,表示同一函數(shù)的是________.(填序號) ①y=和y=()2; ②|y|=|x|和y3=x3; ③y=logax2和y=2logax; ④y=x和y=logaax. 3.若函數(shù)y=f(x)的定義域是[2,4],則y=f(x)的定義域是________. 4.函數(shù)f(x)=log2(3x+1)的值域為_______

2、_. 5.函數(shù)f(x)=loga(x+b)(a>0且a≠1)的圖象經(jīng)過(-1,0)和(0,1)兩點,則f(2)=________. 6.函數(shù)y=loga(x-2)+1(a>0且a≠1)恒過定點________. 一、填空題 1.設(shè)a=log54,b=(log53)2,c=log45,則a,b,c的大小關(guān)系為________. 2.已知函數(shù)y=f(2x)的定義域為[-1,1],則函數(shù)y=f(log2x)的定義域為________. 3.函數(shù)f(x)=loga|x|(a>0且a≠1)且f(8)=3,則下列不等關(guān)系判斷正確的為________.(填序號) ①f(2

3、)>f(-2);②f(1)>f(2);③f(-3)>f(-2); ④f(-3)>f(-4). 4.函數(shù)f(x)=ax+loga(x+1)在[0,1]上的最大值與最小值之和為a,則a的值為________. 5.已知函數(shù)f(x)=lg,若f(a)=b,則f(-a)=________. 6.函數(shù)y=3x(-1≤x<0)的反函數(shù)是________. 7.函數(shù)f(x)=lg(2x-b),若x≥1時,f(x)≥0恒成立,則b應(yīng)滿足的條件是________. 8.函數(shù)y=logax當x>2時恒有|y|>1,則a的取值范圍是________. 9.若l

4、oga2<2,則實數(shù)a的取值范圍是______________. 二、解答題 10.已知f(x)=loga(3-ax)在x∈[0,2]上單調(diào)遞減,求a的取值范圍. 11.已知函數(shù)f(x)=的圖象關(guān)于原點對稱,其中a為常數(shù). (1)求a的值; (2)若當x∈(1,+∞)時,f(x)+(x-1)<m恒成立.求實數(shù)m的取值范圍. 能力提升 12.若函數(shù)f(x)=loga(x2-ax+)有最小值,則實數(shù)a的取值范圍是________. 13.已知logm4<logn4,比較m與n的

5、大?。? 1.在對數(shù)函數(shù)y=logax(a>0,且a≠1)中,底數(shù)a對其圖象的影響 無論a取何值,對數(shù)函數(shù)y=logax(a>0,且a≠1)的圖象均過點(1,0),且由定義域的限制,函數(shù)圖象穿過點(1,0)落在第一、四象限,隨著a的逐漸增大,y=logax(a>1,且a≠1)的圖象繞(1,0)點在第一象限由左向右順時針排列,且當0<a<1時函數(shù)單調(diào)遞減,當a>1時函數(shù)單調(diào)遞增. 2.比較兩個(或多個)對數(shù)的大小時,一看底數(shù),底數(shù)相同的兩個對數(shù)可直接利用對數(shù)函數(shù)的單調(diào)性來比較大小,對數(shù)函數(shù)

6、的單調(diào)性由“底”的范圍決定,若“底”的范圍不明確,則需分“底數(shù)大于1”和“底數(shù)大于0且小于1”兩種情況討論;二看真數(shù),底數(shù)不同但真數(shù)相同的兩個對數(shù)可借助于圖象,或應(yīng)用換底公式將其轉(zhuǎn)化為同底的對數(shù)來比較大?。蝗抑虚g值,底數(shù)、真數(shù)均不相同的兩個對數(shù)可選擇適當?shù)闹虚g值(如1或0等)來比較. 2.3.2 對數(shù)函數(shù)(二) 雙基演練 1. 解析 ∵g()=ln<0, ∴g(ln)==, ∴g(g())=. 2.④ 解析 y=logaax=xlogaa=x, 即y=x,兩函數(shù)的定義域、值域都相同. 3.[,] 解析 由題意得:2≤x≤4,所以()2≥x≥()4, 即≤x≤

7、. 4.(0,+∞) 解析 ∵3x+1>1,∴l(xiāng)og2(3x+1)>0. 5.2 解析 由已知得loga(b-1)=0且logab=1, ∴a=b=2.從而f(2)=log2(2+2)=2. 6.(3,1) 解析 若x-2=1,則不論a為何值, 只要a>0且a≠1,都有y=1. 作業(yè)設(shè)計 1.b<a<c 解析 因為0<log53<log54<1,1<log45, 所以b<a<c. 2.[,4] 解析 ∵-1≤x≤1, ∴2-1≤2x≤2,即≤2x≤2. ∴y=f(x)的定義域為[,2] 即≤lo

8、g2x≤2,∴≤x≤4. 3.③ 解析 ∵loga8=3,解得a=2,因為函數(shù)f(x)=loga|x|(a>0且a≠1)為偶函數(shù),且在(0,+∞)上為增函數(shù),在(-∞,0)上為減函數(shù),由-3<-2,所以f(-3)>f(-2). 4. 解析 函數(shù)f(x)=ax+loga(x+1),令y1=ax,y2=loga(x+1),顯然在[0,1]上,y1=ax與y2=loga(x+1)同增或同減.因而[f(x)]max+[f(x)]min=f(1)+f(0)=a+loga2+1+0=a,解得a=. 5.-b 解析 f(-x)=lg=lg()-1=-lg =-f(x), 所

9、以f(x)為奇函數(shù),故f(-a)=-f(a)=-b. 6.y=log3x(≤x<1) 解析 由y=3x(-1≤x<0)得反函數(shù)是y=log3x(≤x<1). 7.b≤1 解析 由題意,x≥1時,2x-b≥1.又2x≥2,∴b≤1. 8.[,1)∪(1,2] 解析 ∵|y|>1,即y>1或y<-1, ∴l(xiāng)ogax>1或logax<-1, 變形為logax>logaa或logax<loga 當x=2時,令|y|=1, 則有l(wèi)oga2=1或loga2=-1, ∴a=2或a=. 要使x>2時,|y|>1

10、. 如圖所示,a的范圍為1<a≤2或≤a<1. 9.(0,1)∪(,+∞) 解析 loga2<2=logaa2.若0<a<1,由于y=logax是減函數(shù),則0<a2<2,得0<a<,所以0<a<1;若a>1,由于y=logax是增函數(shù),則a2>2,得a>.綜上得0<a<1或a>. 10.解 由a>0可知u=3-ax為減函數(shù),依題意則有a>1. 又u=3-ax在[0,2]上應(yīng)滿足u>0, 故3-2a>0,即a<. 綜上可得,a的取值范圍是1<a&

11、lt;. 11.解 (1)∵函數(shù)f(x)的圖象關(guān)于原點對稱, ∴函數(shù)f(x)為奇函數(shù),∴f(-x)=-f(x), 即=-=, 解得a=-1或a=1(舍). (2)f(x)+ (x-1)=+(x-1) =(1+x), 當x>1時,(1+x)<-1, ∵當x∈(1,+∞)時,f(x)+(x-1)<m恒成立, ∴m≥-1. 12.(1,) 解析 已知函數(shù)f(x)有最小值,令y=x2-ax+,由于y的值可以趨于+∞,所以a>1, 否則,如果0<a<1,f(x)沒有最小值.又由于真數(shù)必須大于0,所以y=x2-ax+存在大于0的最小值,即Δ=a2-4×1×<0,∴-<a<.綜上可知1<a<. 13.解  數(shù)形結(jié)合可得0<n<m<1或1<n<m或0<m<1<n.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!