【名校資料】高考數(shù)學(xué)理二輪復(fù)習(xí):直線與圓含答案限時(shí)規(guī)范訓(xùn)練
《【名校資料】高考數(shù)學(xué)理二輪復(fù)習(xí):直線與圓含答案限時(shí)規(guī)范訓(xùn)練》由會(huì)員分享,可在線閱讀,更多相關(guān)《【名校資料】高考數(shù)學(xué)理二輪復(fù)習(xí):直線與圓含答案限時(shí)規(guī)范訓(xùn)練(6頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、+二二一九高考數(shù)學(xué)學(xué)習(xí)資料一九高考數(shù)學(xué)學(xué)習(xí)資料+ 小題精練小題精練(十四十四) 直線與圓直線與圓 ( (限時(shí):限時(shí):6060 分鐘分鐘) ) 1 1(2014(2014濟(jì)南市模擬濟(jì)南市模擬) )已知直線已知直線axaxbybyc c0 0 與圓與圓O O:x x2 2y y2 21 1 相交于相交于A A,B B兩點(diǎn)兩點(diǎn),且且| |ABAB| | 3 3,則則OAOAOBOB的值是的值是( ( ) ) A A1 12 2 B.B.1 12 2 C C3 34 4 D D0 0 2 2(2013(2013高考天津卷高考天津卷) )已知過點(diǎn)已知過點(diǎn)P P(2(2,2 2) )的直線與圓的直線與圓(
2、 (x x1)1)2 2y y2 25 5 相切相切,且與直線且與直線axaxy y 1 10 0 垂直,則垂直,則a a( ( ) ) A A1 12 2 B B1 1 C C2 2 D.D.1 12 2 3 3直線直線x x 3 3y y2 20 0 與圓與圓x x2 2y y2 24 4 相交于相交于A A,B B兩點(diǎn)兩點(diǎn),則弦則弦ABAB的長度等于的長度等于( ( ) ) A A2 2 5 5 B B2 2 3 3 C.C. 3 3 D D1 1 4 4過點(diǎn)過點(diǎn)P P(1(1,1 1) )的直線的直線,將圓形區(qū)域?qū)A形區(qū)域(x x,y y)|)|x x2 2y y2 24 4 分為兩部
3、分分為兩部分,使得這兩部分的面積使得這兩部分的面積 之差最大之差最大,則該直線的方程為則該直線的方程為( ( ) ) A Ax xy y2 20 0 B By y1 10 0 C Cx xy y0 0 D Dx x3 3y y4 40 0 5 5已知點(diǎn)已知點(diǎn)A A(1(1,2 2) ),B B(3(3,2 2) ),以線段以線段ABAB為直徑作圓為直徑作圓C C,則直線則直線l l:x xy y3 30 0 與圓與圓C C的位的位 置關(guān)系是置關(guān)系是( ( ) ) A A相交且過圓心相交且過圓心 B B相交但不過圓心相交但不過圓心 C C相切相切 D D相離相離 6 6圓圓x x2 2y y2
4、22 2x x1 10 0 關(guān)于直線關(guān)于直線 2 2x xy y3 30 0 對(duì)稱的圓的方程是對(duì)稱的圓的方程是( ( ) ) A A( (x x3)3)2 2( (y y2)2)2 21 12 2 B B( (x x3)3)2 2( (y y2)2)2 21 12 2 C C( (x x3)3)2 2( (y y2)2)2 22 2 D D( (x x3)3)2 2( (y y2)2)2 22 2 7 7若直線若直線x xy y1 10 0 與圓與圓( (x xa a) )2 2y y2 22 2 有公共點(diǎn)有公共點(diǎn),則實(shí)數(shù)則實(shí)數(shù)a a的取值范圍是的取值范圍是( ( ) ) A A 3 3,1
5、1 B B 1 1,3 3 C C 3 3,1 1 D D( (,3131,) ) 8 8(2013(2013高考重慶卷高考重慶卷) )已知圓已知圓C C1 1:( (x x2)2)2 2( (y y3)3)2 21 1,圓圓C C2 2:( (x x3)3)2 2( (y y4)4)2 29 9,M M, N N分別是圓分別是圓C C1 1,C C2 2上的動(dòng)點(diǎn)上的動(dòng)點(diǎn),P P為為x x軸上的動(dòng)點(diǎn)軸上的動(dòng)點(diǎn),則則| |PMPM| | |PNPN| |的最小值為的最小值為( ( ) ) A A5 5 2 24 4 B.B. 17171 1 C C6 62 2 2 2 D.D. 1717 9 9
6、若直線若直線l l:axaxbyby1 10 0 始終平分圓始終平分圓M M:x x2 2y y2 24 4x x2 2y y1 10 0 的周長的周長,則則( (a a2)2)2 2( (b b 2)2)2 2的最小值為的最小值為( ( ) ) A.A. 5 5 B B5 5 C C2 2 5 5 D D1010 1010(2014(2014湖北省八校湖北省八校聯(lián)考聯(lián)考) )定義:定義:平面內(nèi)兩條相交但不垂直的數(shù)軸構(gòu)成的坐標(biāo)系平面內(nèi)兩條相交但不垂直的數(shù)軸構(gòu)成的坐標(biāo)系( (兩條數(shù)兩條數(shù) 軸的原點(diǎn)重合且單位長度相同軸的原點(diǎn)重合且單位長度相同) )稱為平面斜坐標(biāo)系在平面斜坐標(biāo)系稱為平面斜坐標(biāo)系在平
7、面斜坐標(biāo)系xOyxOy中中,若若OPOPxexe1 1 yeye2 2( (其中其中e e1 1,e e2 2分別是分別是斜坐標(biāo)系斜坐標(biāo)系x x軸軸,y y軸正方向上的單位向量軸正方向上的單位向量,x x,y yR R,O O為坐標(biāo)為坐標(biāo)系原點(diǎn)系原點(diǎn)) ), 則有序數(shù)對(duì)則有序數(shù)對(duì)( (x x,y y) )稱為點(diǎn)稱為點(diǎn)P P的斜坐標(biāo) 在平面斜坐標(biāo)系的斜坐標(biāo) 在平面斜坐標(biāo)系xOyxOy中中, 若若xOyxOy120120,點(diǎn)點(diǎn)C C的斜坐標(biāo)為的斜坐標(biāo)為(2(2,3 3) ),則以點(diǎn)則以點(diǎn)C C為圓為圓心心,2 2 為半徑的圓在斜坐標(biāo)系為半徑的圓在斜坐標(biāo)系xOyxOy中的方程是中的方程是( ( )
8、)21cnjy21cnjy A Ax x2 2y y2 24 4x x6 6y y9 90 0 B Bx x2 2y y2 24 4x x6 6y y9 90 0 C Cx x2 2y y2 2x x4 4y yxyxy3 30 0 D Dx x2 2y y2 2x x4 4y yxyxy3 30 0 1111設(shè)兩圓設(shè)兩圓C C1 1、C C2 2都和兩坐標(biāo)軸相切都和兩坐標(biāo)軸相切,且都過點(diǎn)且都過點(diǎn)(4(4,1 1) ),則兩圓心的距離則兩圓心的距離| |C C1 1C C2 2| |( ( ) ) A A4 4 B B4 4 2 2 C C8 8 D D8 8 2 2 1212 (2014(2
9、014長春市調(diào)研測試長春市調(diào)研測試) )已知直線已知直線x xy yk k0(0(k k0)0)與圓與圓x x2 2y y2 24 4 交于不同的兩點(diǎn)交于不同的兩點(diǎn)A A, B B,O O是坐標(biāo)原點(diǎn)是坐標(biāo)原點(diǎn),且有且有| |OAOAOBOB| |3 33 3| |ABAB| |,那么那么k k的取值范圍是的取值范圍是( ( ) ) A A( ( 3 3,) ) B B 2 2,) C C 2 2,2 2 2 2) ) D D 3 3,2 2 2 2) ) 1313過點(diǎn)過點(diǎn)(2(2,3 3) )與圓與圓( (x x1)1)2 2y y2 21 1 相切的直線的方程為相切的直線的方程為_ 1414
10、已知點(diǎn)已知點(diǎn)P P是圓是圓C C:x x2 2y y2 24 4x x6 6y y3 30 0 上的一點(diǎn)上的一點(diǎn),直線直線l l:3 3x x4 4y y5 50.0.若點(diǎn)若點(diǎn)P P到直到直 線線l l的距離為的距離為 2 2,則符合題意的點(diǎn)則符合題意的點(diǎn)P P有有_個(gè)個(gè) 1515設(shè)設(shè)m m,n nR R,若直線,若直線l l:mxmxnyny1 10 0 與與x x軸相交于點(diǎn)軸相交于點(diǎn)A A,與與y y軸相交于點(diǎn)軸相交于點(diǎn)B B,且且l l與圓與圓 x x2 2y y2 24 4 相交所得弦的長為相交所得弦的長為 2 2,O O為坐標(biāo)原點(diǎn)為坐標(biāo)原點(diǎn),則則AOBAOB面積的最小值為面積的最小值
11、為_ 1616過直線過直線x xy y2 2 2 20 0 上點(diǎn)上點(diǎn)P P作圓作圓x x2 2y y2 21 1 的兩條切線的兩條切線,若兩條切線的夾角是若兩條切線的夾角是 6060, 則點(diǎn)則點(diǎn)P P的坐標(biāo)是的坐標(biāo)是_ 小題精練小題精練(十四十四) 1 1 解析:解析: 選選 A.A.在在OABOAB中中, | |OAOA| | |OBOB| |1 1, | |ABAB| | 3 3, 可得可得AOBAOB120120, 所以所以O(shè)AOAOBOB1 11 1cos 120cos 1201 12 2. .2121 教育網(wǎng)教育網(wǎng) 2 2解析:解析:選選 C.C.由圓的切由圓的切線與直線線與直線ax
12、axy y1 10 0 垂直垂直,設(shè)切線方程為設(shè)切線方程為x xayayc c0 0,再再代入點(diǎn)代入點(diǎn)(2(2,2 2) ),結(jié)合結(jié)合圓心到切線的距離等于圓的半徑圓心到切線的距離等于圓的半徑,求出求出a a的值的值 由題意知圓心由題意知圓心為為(1(1,0 0) ),由圓的切線與直線由圓的切線與直線axaxy y1 10 0 垂直垂直,可設(shè)圓的切線方程為可設(shè)圓的切線方程為x xayayc c0 0,由切線由切線x xayayc c0 0 過點(diǎn)過點(diǎn)P P(2(2,2 2) ),c c2 22 2a a, |1|12 22 2a a| |1 1a a2 2 5 5,解得解得a a2.2. 3 3解
13、析:解析:選選 B.B.利于平面幾何中利于平面幾何中圓心距、半徑圓心距、半徑、半弦長的關(guān)系、半弦長的關(guān)系求解求解圓心到直線圓心到直線x x 3 3y y2 20 0 的距離的距離d d|0|0 3 30 02|2|1 12 2( 3 3)2 21 1, 半徑半徑r r2 2, , 弦長弦長| |ABAB| |2 2r r2 2d d2 22 2 2 22 21 12 22 2 3 3. .【來源:【來源:2121世紀(jì)世紀(jì)教育教育網(wǎng)】網(wǎng)】 4 4解析:解析:選選 A.A.當(dāng)圓心與當(dāng)圓心與P P的連線和過點(diǎn)的連線和過點(diǎn)P P的直線垂直時(shí)的直線垂直時(shí),符合條件符合條件 圓心圓心O O與與P P點(diǎn)連線
14、的斜率點(diǎn)連線的斜率k k1 1, 直線直線OPOP垂直于垂直于x xy y2 20 0,故選故選 A.A. 5 5解析:解析:選選 B.B.以以線段線段ABAB為直為直徑作圓徑作圓C C,則圓則圓C C的圓心坐標(biāo)的圓心坐標(biāo)C C(2(2,2 2) ),半徑半徑r r1 12 2| |ABAB| |1 12 2(3(31)1)1.1.點(diǎn)點(diǎn)C C到直線到直線l l:x xy y3 30 0 的距離為的距離為|2|22 23|3|2 22 22 21 1,所以直線與圓所以直線與圓相交相交,并且點(diǎn)并且點(diǎn)C C不在直線不在直線l l:x xy y3 30 0 上上,故應(yīng)選故應(yīng)選 B.B.wwwwww-
15、-2 2- -1 1- -cnjycnjy- -comcom 6 6解析:解析:選選 C.C.解法一:排除法解法一:排除法,由由x x2 2y y2 22 2x x1 10 0 得得,( (x x1)1)2 2y y2 22 2,知圓心知圓心O O1 1(1(1,0 0) ),半徑為半徑為 2 2,故排除故排除 A A、B B. .2 2- -1 1- -c c- -n n- -j j- -y y 又又 C C 中圓心中圓心O O2 2( (3 3,2 2) ),O O1 1O O2 2中中點(diǎn)點(diǎn)( (1 1,1 1) )在直線在直線 2 2x xy y3 30 0 上上,而而 D D 中圓心中
16、圓心O O3 3(3(3,2)2),O O1 1O O3 3中點(diǎn)中點(diǎn)(2(2,1)1)不在直線不在直線 2 2x xy y3 30 0 上上,排除排除 D.D.故選故選 C.C. 解法二:由解法二:由x x2 2y y2 22 2x x1 10 0,得得( (x x1)1)2 2y y2 22 2,圓心為圓心為(1(1,0 0) ),而而(1(1,0 0) )關(guān)于關(guān)于 2 2x xy y3 30 0 的對(duì)稱點(diǎn)為的對(duì)稱點(diǎn)為( (3 3,2 2) ),【來源:【來源:21cnj*y.co*m21cnj*y.co*m】 對(duì)稱圓的方程為對(duì)稱圓的方程為( (x x3)3)2 2( (y y2)2)2 2
17、2.2. 7 7解析:解析:選選 C.C.利用直線和圓的位置關(guān)系求解利用直線和圓的位置關(guān)系求解 由題意知由題意知,圓心為圓心為( (a a,0 0) ),半徑半徑r r 2 2. . 若直線與圓若直線與圓有公共點(diǎn)有公共點(diǎn),則圓心到直線的距離小于或等于半徑,即,則圓心到直線的距離小于或等于半徑,即| |a a0 01|1|2 2 2 2,| |a a1|1|2.2.3 3a a1 1,故選故選 C.C.2121 世紀(jì)教育網(wǎng)版權(quán)所有世紀(jì)教育網(wǎng)版權(quán)所有 8 8解析:解析: 選選 A.A.先求出圓先求出圓心坐標(biāo)和半徑心坐標(biāo)和半徑, 再結(jié)合對(duì)稱性求解最小值設(shè)再結(jié)合對(duì)稱性求解最小值設(shè)P P( (x x,0
18、 0) ),設(shè)設(shè)C C1 1(2(2,3 3) )關(guān)于關(guān)于x x軸的對(duì)稱點(diǎn)為軸的對(duì)稱點(diǎn)為C C1 1(2(2,3)3),那么那么| |PCPC1 1| | |PCPC2 2| | |PCPC1 1| |PCPC2 2| | |C C1 1C C2 2| |(2 23 3)2 2(3 34 4)2 25 5 2 2. .【出處:【出處:2121 教育名師】教育名師】 而而| |PMPM| | |PCPC1 1| |1 1, | |PNPN| | |PCPC2 2| |3 3, | |PMPM| | |PNPN| | |PCPC1 1| | |PCPC2 2| |4 45 5 2 24.4. 9
19、9解析:解析:選選 B.B.由題意知由題意知,圓心坐標(biāo)為圓心坐標(biāo)為( (2 2,1)1), 2 2a ab b1 10 0, (a a2 2)2 2(b b2 2)2 2表示點(diǎn)表示點(diǎn)( (a a,b b) )與與(2(2,2 2) )的距離的距離, (a a2 2)2 2(b b2 2)2 2的最小值為的最小值為|4|42 21|1|4 41 1 5 5, 所以所以( (a a2)2)2 2( (b b2)2)2 2的最小值為的最小值為 5.5.故選故選 B.B. 1010解析:解析:選選 C.C.設(shè)圓上任設(shè)圓上任一點(diǎn)一點(diǎn)P P( (x x,y y) ),則則CPCP( (x x2)2)e e
20、1 1( (y y3)3)e e2 2,| |CPCP| |2 2( (x x2)2)2 22(2(x x2)(2)(y y3)3)e e1 1e e2 2( (y y3)3)2 2( (x x2)2)2 22(2(x x2)2)( (y y3)3) 1 12 2( (y y3)3)2 24 4, 故所故所求方程為求方程為x x2 2y y2 2x x4 4y yxyxy3 30.0.21cnjycom21cnjycom 1111解析:解析:選選 C.C.兩圓與兩坐標(biāo)軸兩圓與兩坐標(biāo)軸都相切都相切,且都經(jīng)過點(diǎn),且都經(jīng)過點(diǎn)( (4 4,1 1) ), 兩圓圓心均在第一象限且橫、縱坐標(biāo)相等兩圓圓心均
21、在第一象限且橫、縱坐標(biāo)相等 設(shè)兩圓的圓心分別為設(shè)兩圓的圓心分別為( (a a,a a) ),( (b b,b b) ), 則有則有(4(4a a) )2 2(1(1a a) )2 2a a2 2,(4(4b b) )2 2(1(1b b) )2 2b b2 2, 即即a a,b b為方程為方程(4(4x x) )2 2(1(1x x) )2 2x x2 2的兩個(gè)根的兩個(gè)根, 整理得整理得x x2 21010 x x17170 0,a ab b1010,abab17.17. ( (a ab b) )2 2( (a ab b) )2 24 4abab1001004 417173232, |C C1
22、 1C C2 2| | (a ab b)2 2(a ab b)2 2 32322 28.8. 1212解析:解析:選選 C.C.當(dāng)當(dāng)| |OAOAOBOB| |3 33 3| |ABAB| |時(shí)時(shí),O O,A A,B B三點(diǎn)為等腰三點(diǎn)為等腰三角形的三個(gè)頂點(diǎn)三角形的三個(gè)頂點(diǎn),其中其中OAOAOBOB,AOAOB B120120,從而圓心從而圓心O O到直線到直線x xy yk k0(0(k k0)0)的距的距離為離為 1 1,此時(shí)此時(shí)k k 2 2;當(dāng);當(dāng)k k 2 2時(shí)時(shí),| |OAOAOBOB| |3 33 3| |ABAB| |,又直線與圓又直線與圓x x2 2y y2 24 4 存在兩交
23、點(diǎn)存在兩交點(diǎn),故故k k2 2 2 2, 綜上綜上,k k的取值范圍為的取值范圍為 2 2, 2 2 2 2) ), 故選故選C.C.www.21www.21- -cncn- - 1313解析:解析:設(shè)設(shè)圓的切圓的切線方程為線方程為y yk k( (x x2)2)3 3,由圓心由圓心(1(1,0 0) )到切線的距離為半徑到切線的距離為半徑 1 1,得得k k4 43 3,所以切線方程為所以切線方程為 4 4x x3 3y y1 10 0,又直線又直線x x2 2 也是圓的切線也是圓的切線,所以直線方程為所以直線方程為4 4x x3 3y y1 10 0 或或x x2.2.2121世紀(jì)世紀(jì)*
24、*教育網(wǎng)教育網(wǎng) 答案:答案:4 4x x3 3y y1 10 0 或或x x2 2 1414解析:解析:由題意知圓的標(biāo)準(zhǔn)由題意知圓的標(biāo)準(zhǔn)方程為方程為( (x x2)2)2 2( (y y3)3)2 24 42 2,圓心到直圓心到直線線l l的距離的距離d d| |6 612125|5|5 523235 54 4,故直線與圓相離故直線與圓相離,則滿足題意的點(diǎn)則滿足題意的點(diǎn)P P有有 2 2 個(gè)個(gè) 答案:答案:2 2 1515解析:解析:利用半徑、弦長的一半及弦心距的關(guān)系求解利用半徑、弦長的一半及弦心距的關(guān)系求解 由題意知由題意知,A A 1 1m m,0 0 ,B B 0 0,1 1n n,圓圓
25、的半徑為的半徑為 2 2,且且l l與圓的相交弦長為與圓的相交弦長為 2 2,則圓則圓心到弦所心到弦所在直線的距離為在直線的距離為 3 3,即即1 1m m2 2n n2 2 3 3m m2 2n n2 21 13 3,且且S SAOBAOB1 12 2 1 1m m 1 1n n 1 12 2mnmn1 1m m2 2n n2 23 3,即三角形面積的最即三角形面積的最小值為小值為 答案:答案:3 3 1616解析:解析:利用數(shù)形結(jié)合求解利用數(shù)形結(jié)合求解 直線與圓的位置關(guān)直線與圓的位置關(guān)系如圖所示系如圖所示,設(shè)設(shè)P P( (x x,y y) ),則則APOAPO3030,且且OAOA1.1.在在 RtRtAPOAPO中中,OAOA1 1,APOAPO3030,則則OPOP2 2,即即x x2 2y y2 24.4.又又x xy y2 2 2 20 0,聯(lián)立解得聯(lián)立解得x xy y 2 2,即即P P( ( 2 2, 2 2) ) 21*cnjy*com21*cnjy*com 答案:答案:( ( 2 2, 2 2) ) 高考數(shù)學(xué)復(fù)習(xí)精品 高考數(shù)學(xué)復(fù)習(xí)精品
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年防凍教育安全教育班會(huì)全文PPT
- 2025年寒假安全教育班會(huì)全文PPT
- 初中2025年冬季防溺水安全教育全文PPT
- 初中臘八節(jié)2024年專題PPT
- 主播直播培訓(xùn)提升人氣的方法正確的直播方式如何留住游客
- XX地區(qū)機(jī)關(guān)工委2024年度年終黨建工作總結(jié)述職匯報(bào)
- 心肺復(fù)蘇培訓(xùn)(心臟驟停的臨床表現(xiàn)與診斷)
- 我的大學(xué)生活介紹
- XX單位2024年終專題組織生活會(huì)理論學(xué)習(xí)理論學(xué)習(xí)強(qiáng)黨性凝心聚力建新功
- 2024年XX單位個(gè)人述職述廉報(bào)告
- 一文解讀2025中央經(jīng)濟(jì)工作會(huì)議精神(使社會(huì)信心有效提振經(jīng)濟(jì)明顯回升)
- 2025職業(yè)生涯規(guī)劃報(bào)告自我評(píng)估職業(yè)探索目標(biāo)設(shè)定發(fā)展策略
- 2024年度XX縣縣委書記個(gè)人述職報(bào)告及2025年工作計(jì)劃
- 寒假計(jì)劃中學(xué)生寒假計(jì)劃安排表(規(guī)劃好寒假的每個(gè)階段)
- 中央經(jīng)濟(jì)工作會(huì)議九大看點(diǎn)學(xué)思想強(qiáng)黨性重實(shí)踐建新功