高考數學理一輪資源庫 第5章學案25

上傳人:仙*** 文檔編號:43054177 上傳時間:2021-11-29 格式:DOC 頁數:10 大?。?64.50KB
收藏 版權申訴 舉報 下載
高考數學理一輪資源庫 第5章學案25_第1頁
第1頁 / 共10頁
高考數學理一輪資源庫 第5章學案25_第2頁
第2頁 / 共10頁
高考數學理一輪資源庫 第5章學案25_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數學理一輪資源庫 第5章學案25》由會員分享,可在線閱讀,更多相關《高考數學理一輪資源庫 第5章學案25(10頁珍藏版)》請在裝配圖網上搜索。

1、 精品資料 學案25 平面向量的基本定理及坐標表示 導學目標: 1.了解平面向量的基本定理及其意義.2.掌握平面向量的正交分解及其坐標表示.3.會用坐標表示平面向量的加法、減法與數乘運算.4.理解用坐標表示的平面向量共線的條件. 自主梳理 1.平面向量基本定理 定理:如果e1,e2是同一平面內的兩個________的向量,那么對于這一平面內的任一向量a,__________一對實數λ1,λ2,使a=______________. 我們把不共線的向量e1,e2叫做表示這一平面內所有向量的一組________. 2.把一個向量

2、分解為兩個________的向量,叫做把向量正交分解. 3.在平面直角坐標系中,分別取與x軸、y軸方向相同的兩個單位向量i,j作為基底,對于平面內的一個向量a,有且只有一對實數x,y使a=xi+yj,我們把有序數對________叫做向量a的________,記作a=________,其中x叫a在________上的坐標,y叫a在________上的坐標. 4.平面向量的坐標運算 (1)已知向量a=(x1,y1),b=(x2,y2)和實數λ,那么a+b=____________________,a-b=__________________,λa=______________. (2)已

3、知A(x1,y1),B(x2,y2),則=-=(x2,y2)-(x1,y1)=(x2-x1,y2-y1),即一個向量的坐標等于表示此向量的有向線段的__________的坐標減去__________的坐標. 5.若a=(x1,y1),b=(x2,y2) (b≠0),則a∥b的充要條件是________________. 6.(1)P1(x1,y1),P2(x2,y2),則P1P2的中點P的坐標為________________________. (2)P1(x1,y1),P2(x2,y2),P3(x3,y3),則△P1P2P3的重心P的坐標為_______________________

4、_. 自我檢測 1.(2010福建改編)若向量a=(x,3)(x∈R),則“x=4”是“|a|=5”的________條件. 2.設a=,b=,且a∥b,則銳角α=________. 3.已知向量a=(6,-4),b=(0,2),=c=a+λb,若C點在函數y=sin x的圖象上,則實數λ=________. 4.(2010陜西)已知向量a=(2,-1),b=(-1,m),c=(-1,2),若(a+b)∥c,則m=________. 5.(2009安徽)給定兩個長度為1的平面向量和,它們的夾角為120.如圖所示,點C在以O為圓心的圓弧上變動,若=x+y,其中x,y∈R,則x+y的最

5、大值是______. 探究點一 平面向量基本定理的應用 例1 如圖所示,在△OAB中,=,=,AD與BC交于點M,設=a,=b,以a、b為基底表示. 變式遷移1 如圖,平面內有三個向量、、,其中與的夾角為120,與的夾角為30,且||=||=1,||=2,若=λ+μ(λ、μ∈R),則λ+μ的值為________. 探究點二 平面向量的坐標運算 例2 已知A(-2,4),B(3,-1),C(-3,-4),且=3,=2,試求點M,N和的坐標. 變式遷移2 已知點A(1,-2),若向量與a=(2,3)同向,||=2,則點B的坐標為_____

6、___. 探究點三 在向量平行下求參數問題 例3 已知平面內三個向量:a=(3,2),b=(-1,2),c=(4,1). (1)求滿足a=mb+nc的實數m、n; (2)若(a+kc)∥(2b-a),求實數k. 變式遷移3 (2009江西)已知向量a=(3,1),b=(1,3),c=(k,7),若(a-c)∥b,則k=________. 1.在解決具體問題時,合理地選擇基底會給解題帶來方便.在解有關三角形的問題時,可以不去特意選擇兩個基本向量,而可以用三邊所在的三個向量,最后可以根據需要任意留下兩個即可,這樣思考問題要簡單得多. 2.平面直角坐標系中,以原點為

7、起點的向量=a,點A的位置被a所唯一確定,此時a的坐標與點A的坐標都是(x,y).向量的坐標表示和以坐標原點為起點的向量是一一對應的,即向量(x,y) 向量點A(x,y).要把點的坐標與向量的坐標區(qū)分開,相等的向量坐標是相同的,但起點、終點的坐標可以不同,也不能認為向量的坐標是終點的坐標,如A(1,2),B(3,4),則=(2,2). (滿分:90分) 一、填空題(每小題6分,共48分) 1.與向量a=(12,5)平行的單位向量為________. 2.設a、b是不共線的兩個非零向量,已知=2a+pb,=a+b,=a-2b.若A、B、D三點共線,則p的值為________. 3.如果

8、e1、e2是平面α內所有向量的一組基底,那么下列命題正確的是________(填上正確命題的序號). ①若實數λ1、λ2使λ1e1+λ2e2=0,則λ1=λ2=0. ②對空間任一向量a都可以表示為a=λ1e1+λ2e2,其中λ1、λ2∈R. ③λ1e1+λ2e2不一定在平面α內,λ1、λ2∈R. ④對于平面α內任一向量a,使a=λ1e1+λ2e2的實數λ1、λ2有無數對. 4.在平面直角坐標系xOy中,四邊形ABCD的邊AB∥DC,AD∥BC.已知A(-2,0),B(6,8),C(8,6),則D點的坐標為________. 5.如圖所示,在△ABC中,點O是BC的中點.過點O的直線

9、分別交直線AB、AC于不同的兩點M、N,若=m,=n,則m+n的值為______. 6.已知向量集合M={a|a=(1,2)+λ(3,4),λ∈R},N={a|a=(-2,-2)+λ(4,5),λ∈R},則M∩N=________. 7.設兩個向量a=(λ+2,λ2-cos2α)和b=,其中λ、m、α為實數.若a=2b,則的取值范圍是__________. 8.(2009天津)在四邊形ABCD中,==(1,1),+=,則四邊形ABCD的面積為________. 二、解答題(共42分) 9.(12分)已知A、B、C三點的坐標分別為(-1,0)、(3,-1)、(1,2),并且=,=.

10、求證:∥. 10.(14分)如圖,在邊長為1的正△ABC中,E,F分別是邊AB,AC上的點,若=m,=n,m,n∈(0,1).設EF的中點為M,BC的中點為N. (1)若A,M,N三點共線,求證:m=n; (2)若m+n=1,求||的最小值. 11.(16分)在△ABC中,a、b、c分別是角A、B、C的對邊,已知向量m=(a,b),向量n=(cos A,cos B),向量p=(2sin,2sin A),若m∥n,p2=9,求證:△ABC為等邊三角形. 答案 自主梳理 1.不共線 有且只有 λ1e1+λ2e2 基底 2.互相垂直

11、 3.(x,y) 坐標 (x,y) x軸 y軸 4.(1)(x1+x2,y1+y2) (x1-x2,y1-y2) (λx1,λy1) (2)終點 始點 5.x1y2-x2y1=0 6.(1) (2) 自我檢測 1.充分而不必要 解析 由x=4知|a|==5;由|a|==5,得x=4或x=-4.故“x=4”是“|a|=5”的充分而不必要條件. 2.45 解析 ∵a∥b,∴-sin αcos α=0, ∴sin 2α=1,2α=90,α=45. 3. 解析 c=a+λb=(6,-4+2λ), 代入y=sin x得,-4+2λ=sin =1,解得λ=. 4.-1 解析 a

12、+b=(1,m-1),由(a+b)∥c, 得12-(m-1)(-1)=0,所以m=-1. 5.2 解析 建立如圖所示的坐標系, 則A(1,0),B(cos 120,sin 120), 即B(-,). 設∠AOC=α, 則=(cos α,sin α). ∵=x+y =(x,0)+=(cos α,sin α). ∴ ∴ ∴x+y=sin α+cos α=2sin(α+30). ∵0≤α≤120,∴30≤α+30≤150. ∴x+y有最大值2,當α=60時取最大值. 課堂活動區(qū) 例1 解題導引 本題利用方程的思想,設=ma+nb,通過建立關于m、n的方程求解,同時注

13、意體會應用向量法解決平面幾何問題的方法. 解 設=ma+nb (m,n∈R), 則=-=(m-1)a+nb, =-=b-a=-a+b. 因為A,M,D三點共線,所以=,即m+2n=1. 而=-=a+nb, =-=b-a=-a+b, 因為C,M,B三點共線,所以=, 即4m+n=1.由 解得 所以=a+b. 變式遷移1 6 解析 如圖, =+ =λ+μ. 在△OCD中,∠COD=30,∠OCD=∠COB=90, 可求||=4,同理可求||=2, ∴λ=4,μ=2,λ+μ=6. 例2 解 ∵A(-2,4),B(3,-1),C(-3,-4), ∴=(1,8),

14、=(6,3). ∴=3=(3,24),=2=(12,6). 設M(x,y),則=(x+3,y+4)=(3,24), ∴ ∴ ∴M(0,20). 同理可得N(9,2),因此=(9,-18). ∴所求M(0,20),N(9,2),=(9,-18). 變式遷移2 (5,4) 解析 ∵向量與a同向,∴設=(2t,3t) (t>0). 由||=2,∴4t2+9t2=413.∴t2=4. ∵t>0,∴t=2.∴=(4,6). 設B為(x,y),∴ ∴ 例3 解 (1)∵a=mb+nc,m,n∈R, ∴(3,2)=m(-1,2)+n(4,1)=(-m+4n,2m+n). ∴ 解之得

15、 (2)∵(a+kc)∥(2b-a), 且a+kc=(3+4k,2+k),2b-a=(-5,2), ∴(3+4k)2-(-5)(2+k)=0,∴k=-. 變式遷移3 5 解析 ∵a-c=(3,1)-(k,7)=(3-k,-6), 且(a-c)∥b,∴=,∴k=5. 課后練習區(qū) 1.(,)或(-,-) 2.-1 解析 =+=2a-b,由已知得=λ,即,∴p=-1. 3.① 4.(0,-2) 解析 設D點的坐標為(x,y),由題意知=, 即(2,-2)=(x+2,y),所以x=0,y=-2,∴D(0,-2). 5.2 解析 方法一 若M與B重合,N與C重合,則m+n

16、=2. 方法二 ∵2=+=m+n, ∴=+.∵O、M、N共線,∴+=1. ∴m+n=2. 6.{(-2,-2)} 解析 M={a|a=(1+3λ,2+4λ),λ∈R}, N={a|a=(-2+4λ,-2+5λ),λ∈R}, 令,即, 解之得,代入M或N中得a=(-2,-2). ∴M∩N={(-2,-2)}. 7.[-6,1] 解析 ∵2b=(2m,m+2sin α),∴λ+2=2m, λ2-cos2α=m+2sin α,∴(2m-2)2-m=cos2α+2sin α, 即4m2-9m+4=1-sin2α+2sin α. 又∵-2≤1-sin2α+2sin α≤2,

17、 ∴-2≤4m2-9m+4≤2,解得≤m≤2, ∴≤≤4.又∵λ=2m-2, ∴=2-,∴-6≤2-≤1. ∴∈[-6,1]. 8. 解析 由||=||,+=可知四邊形ABCD為菱形,則有||=||=, =, 即=,兩邊平方,得 1+2+1=3,=. =,所以cos〈,〉=60. S=||||sin 60==. 9.證明 設E、F兩點的坐標分別為(x1,y1)、(x2,y2),則依題意,得=(2,2),=(-2,3),=(4,-1). ∴==, ==. ∴=(x1,y1)-(-1,0)=, =(x2,y2)-(3,-1)=.……………………………………………………

18、(4分) ∴(x1,y1)=+(-1,0)=, (x2,y2)=+(3,-1) =. ∴=(x2,y2)-(x1,y1)=.……………………………………………………(8分) 又∵=(4,-1),∴4-(-1)=0, ∴∥.………………………………………………………………………………(12分) 10.解 (1)由A,M,N三點共線,得∥, 設=λ(λ∈R),即(+)=λ(+), 所以m+n=λ(+),所以m=n.……………………………………………(5分) (2)因為=-=(+)-(+)=(1-m)+(1-n),……(8分) 又m+n=1,所以=(1-m)+m, 所以||2

19、=(1-m)22+m22+ (1-m)m =(1-m)2+m2+(1-m)m =(m-)2+.…………………………………………………………………………(12分) 故當m=時,||min=.……………………………………………………………(14分) 11.證明 ∵m∥n,∴acos B=bcos A.………………………………………………(2分) 由正弦定理,得sin Acos B=sin Bcos A, 即sin(A-B)=0.…………………………………………………………………………(5分) ∵A、B為三角形的內角, ∴-π

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!