二輪復習數(shù)學理普通生通用版講義:第一部分 第三層級 高考5個大題 題題研訣竅 圓錐曲線問題巧在“設(shè)”、難在“算” Word版含解析

上傳人:仙*** 文檔編號:43302034 上傳時間:2021-12-01 格式:DOC 頁數(shù):11 大小:451.67KB
收藏 版權(quán)申訴 舉報 下載
二輪復習數(shù)學理普通生通用版講義:第一部分 第三層級 高考5個大題 題題研訣竅 圓錐曲線問題巧在“設(shè)”、難在“算” Word版含解析_第1頁
第1頁 / 共11頁
二輪復習數(shù)學理普通生通用版講義:第一部分 第三層級 高考5個大題 題題研訣竅 圓錐曲線問題巧在“設(shè)”、難在“算” Word版含解析_第2頁
第2頁 / 共11頁
二輪復習數(shù)學理普通生通用版講義:第一部分 第三層級 高考5個大題 題題研訣竅 圓錐曲線問題巧在“設(shè)”、難在“算” Word版含解析_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《二輪復習數(shù)學理普通生通用版講義:第一部分 第三層級 高考5個大題 題題研訣竅 圓錐曲線問題巧在“設(shè)”、難在“算” Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《二輪復習數(shù)學理普通生通用版講義:第一部分 第三層級 高考5個大題 題題研訣竅 圓錐曲線問題巧在“設(shè)”、難在“算” Word版含解析(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 思維流程思維流程找突破口找突破口 技法指導技法指導遷移搭橋遷移搭橋 圓錐曲線解答題的常見類型是: 第圓錐曲線解答題的常見類型是: 第(1)小題通常是根據(jù)已小題通常是根據(jù)已知條件,求曲線方程或離心率,一般比較簡單第知條件,求曲線方程或離心率,一般比較簡單第(2)小題往往是通過方程研究曲線的性質(zhì)小題往往是通過方程研究曲線的性質(zhì)弦長問題、 中弦長問題、 中點弦問題、 動點軌跡問題、 定點與定值問題、 最值問題、點弦問題、 動點軌跡問題、 定點與定值問題、 最值問題、相關(guān)量的取值范圍問題等等,這一小題綜合性較強,可相關(guān)量的取值范圍問題等等,這一小題綜合性較強,可通過巧通過巧設(shè)設(shè)“點點”“”“線線”,

2、設(shè)而不求在具體求解時,可,設(shè)而不求在具體求解時,可將整個解題過程分成程序化的三步:將整個解題過程分成程序化的三步: 第一步,聯(lián)立兩個方程,并將消元所得方程的判別式與第一步,聯(lián)立兩個方程,并將消元所得方程的判別式與根與系數(shù)的關(guān)系正確寫出;根與系數(shù)的關(guān)系正確寫出; 第二步,用兩個交點的同一類坐標的和與積,來表示題第二步,用兩個交點的同一類坐標的和與積,來表示題目中涉及的位置關(guān)系和數(shù)量關(guān)系;目中涉及的位置關(guān)系和數(shù)量關(guān)系; 第三步,求解轉(zhuǎn)化而來的代數(shù)問題,并將結(jié)果回歸到原第三步,求解轉(zhuǎn)化而來的代數(shù)問題,并將結(jié)果回歸到原幾何問題中幾何問題中 在求解時,要根據(jù)題目特征,恰當?shù)脑O(shè)點、設(shè)線,選用在求解時,要根

3、據(jù)題目特征,恰當?shù)脑O(shè)點、設(shè)線,選用恰當運算方法,合理地簡化運算恰當運算方法,合理地簡化運算. 典例典例 (2018 廣州高中綜合測試廣州高中綜合測試)已知圓已知圓(x 3)2y216 的圓心為的圓心為 M, 點, 點 P 是圓是圓M 上的動點,點上的動點,點 N( 3,0),點,點 G 在線段在線段 MP 上,且滿足上,且滿足(GN GP )(GN GP ) (1)求點求點 G 的軌跡的軌跡 C 的方程;的方程; (2)過點過點 T(4,0)作斜率不為作斜率不為 0 的直線的直線 l 與軌跡與軌跡 C 交于交于 A, B 兩點, 點兩點, 點 A 關(guān)于關(guān)于 x 軸的對稱點軸的對稱點為為 D,連

4、接,連接 BD 交交 x 軸于點軸于點 Q Q,求,求ABQ Q 面積的最大值面積的最大值 快審題快審題 求什么求什么 想什么想什么 求軌跡方程,想到求軌跡方程的方法求軌跡方程,想到求軌跡方程的方法 求三角形面積的最值,想到表示出三角形面積的式子求三角形面積的最值,想到表示出三角形面積的式子 給什么給什么 用什么用什么 給出向量垂直關(guān)系,用數(shù)量積轉(zhuǎn)化為線段相等給出向量垂直關(guān)系,用數(shù)量積轉(zhuǎn)化為線段相等 給出直線給出直線l l的條件,應(yīng)設(shè)出直線方程,與的條件,應(yīng)設(shè)出直線方程,與C C的方程聯(lián)立方程組的方程聯(lián)立方程組 差什么差什么 找什么找什么 差三角形的高,應(yīng)先找差三角形的高,應(yīng)先找 Q Q 點的

5、坐標,即求出點的坐標,即求出 BD 的直線方程的直線方程. 穩(wěn)解題穩(wěn)解題 (1)因為因為(GN GP )(GN GP ), 所以所以(GN GP ) (GN GP )0,即,即GN 2 GP 20, 所以所以|GP|GN|, 所以所以|GM|GN|GM|GP|MP|42 3|MN|, 所以點所以點 G 在以在以 M,N 為焦點,長軸長為為焦點,長軸長為 4 的橢圓上的橢圓上, 設(shè)橢圓的方程為設(shè)橢圓的方程為x2a2y2b21(ab0), 則則 2a4,2c2 3, 即即 a2,c 3,所以,所以 b2a2c21, 所以點所以點 G 的軌跡的軌跡 C 的方程為的方程為x24y21. (2)法一:法

6、一:依題意可設(shè)直線依題意可設(shè)直線 l:xmy4. 由由 xmy4,x24y21消去消去 x,得,得(m24)y28my120. 設(shè)設(shè) A(x1,y1),B(x2,y2), 由由64m2412(m24)16(m212)0, 得, 得m212. 且且 y1y28mm24, y1y212m24. 因為點因為點 A 關(guān)于關(guān)于 x 軸的對稱點為軸的對稱點為 D, 所以所以 D(x1,y1), 可設(shè)可設(shè) Q Q(x0,0), 所以所以 kBDy2y1x2x1y2y1m y2y1 , 所以所以 BD 所在直線的方程為所在直線的方程為 yy2y2y1m y2y1 (xmy24) 令令 y0,得,得 x02my

7、1y24 y1y2 y1y2. 將將代入代入, 得得 x024m32m8m1, 所以點所以點 Q Q 的坐標為的坐標為(1,0) 因為因為 SABQ Q|STBQ QSTAQ Q| 12|Q QT|y2y1| 32 y1y2 24y1y26 m212m24, 令令 tm24,結(jié)合,結(jié)合得得 t16, 所以所以 SABQ Q6 t16t 616t21t616 1t1322164. 當且僅當當且僅當 t32,即,即 m 2 7時,時,(SABQ Q)max34. 所以所以ABQ Q 面積的最大值為面積的最大值為34. 法二:法二:依題意知直線依題意知直線 l 的斜率存在,設(shè)其方程為的斜率存在,設(shè)其

8、方程為 yk(x4), A(x1,y1),B(x2,y2),Q Q(x0,0) 由對稱性知由對稱性知 D(x1,y1), 由由 yk x4 ,x24y21消去消去 y, 得得(4k21)x232k2x64k240. 由由 (32k2)24(4k21)(64k24)0, 得得 k2112, 且且 x1x232k24k21,x1x264k244k21. BQ Q (x0 x2,y2), DQ Q (x0 x1,y1) 由由 B,D,Q Q 三點共線知三點共線知BQ Q DQ Q , 故故(x0 x2)y1y2(x0 x1)0, 即即(x0 x2) k(x14)k(x24)(x0 x1)0. 整理得

9、整理得 x02x1x24 x1x2 x1x28. 將將代入代入,得,得 x01,所以點,所以點 Q Q 的坐標為的坐標為(1,0) 因為點因為點 Q Q(1,0)到直線到直線 l 的距離為的距離為 d3|k|k21, |AB| 1k2 x1x2 24x1x2 4 1k2 112k24k21, 所以所以 SABQ Q12|AB| d6 k212k44k21. 令令 t4k21,則,則 k2t14, 結(jié)合結(jié)合得得 1tb0)的的右焦點右焦點 F,拋物線,拋物線 x24 3y 的焦點為橢圓的焦點為橢圓 C 的上頂點,且的上頂點,且 l 交橢圓交橢圓 C 于于 A,B 兩點,點兩點,點 A,F(xiàn),B 在

10、直線在直線 x4 上的射影依次為上的射影依次為 D,K,E. (1)求橢圓求橢圓 C 的方程;的方程; (2)若直線若直線 l 交交 y 軸于點軸于點 M,且,且MA 1AF , MB 2BF ,當,當 m 變化時,證明:變化時,證明:12為定值;為定值; (3)當當 m 變化時,直線變化時,直線 AE 與與 BD 是否相交于定點?若是,請求出定點的坐標,并給予是否相交于定點?若是,請求出定點的坐標,并給予證明;否則,說明理由證明;否則,說明理由 解:解:(1)l:xmy1 過橢圓過橢圓 C 的右焦點的右焦點 F, 右焦點右焦點 F(1,0),c1,即,即 c21. x24 3y 的焦點的焦點

11、(0, 3)為橢圓為橢圓 C 的上頂點,的上頂點, b 3,即,即 b23,a2b2c24, 橢圓橢圓 C 的方程為的方程為x24y231. (2)證明:由題意知證明:由題意知 m0,聯(lián)立,聯(lián)立 xmy1,3x24y2120 得得(3m24)y26my90. 設(shè)設(shè) A(x1,y1),B(x2,y2), 則則 y1y26m3m24,y1y293m24. MA 1AF ,MB 2BF ,M 0,1m, x1,y11m1(1x1,y1), x2,y21m2(1x2,y2), 111my1,211my2, 122y1y2my1y226m3m249m3m2483. 綜上所述,當綜上所述,當 m 變化時,

12、變化時,12為定值為定值83. (3)當當m0時, 直線時, 直線 lx軸, 則四邊形軸, 則四邊形ABED為矩形, 易知為矩形, 易知AE與與 BD相交于點相交于點N 52,0 ,猜想當猜想當 m 變化時,直線變化時,直線 AE 與與 BD 相交于定點相交于定點 N 52,0 ,證明如下:,證明如下: 則則AN 52x1,y1 32my1,y1, 易知易知 E(4,y2),則,則NE 32,y2. 32my1y232(y1)32(y1y2)my1y232 6m3m24m 93m240, AN NE ,即,即 A,N,E 三點共線三點共線 同理可得同理可得 B,N,D 三點三點共線共線 則猜想

13、成立,則猜想成立, 故當故當 m 變化時,直線變化時,直線 AE 與與 BD 相交于定點相交于定點 N 52,0 . 4(2018 全國卷全國卷)已知斜率為已知斜率為 k 的直線的直線 l 與橢圓與橢圓 C:x24y231 交于交于 A,B 兩點,線段兩點,線段AB 的中點為的中點為 M(1,m)(m0) (1)證明:證明:k12; (2)設(shè)設(shè) F 為為 C 的右焦點,的右焦點, P 為為 C 上一點, 且上一點, 且 FP FA FB 0.證明:證明: | FA |, | FP |, |FB |成等差數(shù)列,并求該數(shù)列的公差成等差數(shù)列,并求該數(shù)列的公差 解:解:(1)證明:設(shè)證明:設(shè) A(x1

14、,y1),B(x2,y2), 則則x214y2131,x224y2231. 兩式相減,并由兩式相減,并由y1y2x1x2k 得得x1x24y1y23 k0. 由題設(shè)知由題設(shè)知x1x221,y1y22m,于是,于是 k34m. 由題設(shè)得由題設(shè)得 0m32,故,故 k12. (2)由題意得由題意得 F(1,0)設(shè)設(shè) P(x3,y3), 則則(x31,y3)(x11,y1)(x21,y2)(0,0) 由由(1)及題設(shè)得及題設(shè)得 x33(x1x2)1, y3(y1y2)2m0. 又點又點 P 在在 C 上,所以上,所以 m34, 從而從而 P 1,32,| FP |32, 于是于是| FA | x11

15、 2y21 x11 23 1x2142x12. 同理同理|FB |2x22. 所以所以| FA | FB |412(x1x2)3. 故故 2| FP | FA | FB |, 即即| FA |,| FP |,| FB |成等差數(shù)列成等差數(shù)列 設(shè)該數(shù)列的公差為設(shè)該數(shù)列的公差為 d, 則則 2|d| FB | FA |12|x1x2| 12 x1x2 24x1x2. 將將 m34代入代入得得 k1, 所以所以 l 的方程為的方程為 yx74, 代入代入 C 的方程,并整理得的方程,并整理得 7x214x140. 故故 x1x22,x1x2128,代入,代入解得解得|d|3 2128. 所以該數(shù)列的公差為所以該數(shù)列的公差為3 2128或或3 2128.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!