二輪復(fù)習(xí)數(shù)學(xué)文通用版講義:第一部分 第三層級(jí) 高考5個(gè)大題 題題研訣竅 函數(shù)與導(dǎo)數(shù)綜合問(wèn)題巧在“轉(zhuǎn)”、難在“分” Word版含解析
《二輪復(fù)習(xí)數(shù)學(xué)文通用版講義:第一部分 第三層級(jí) 高考5個(gè)大題 題題研訣竅 函數(shù)與導(dǎo)數(shù)綜合問(wèn)題巧在“轉(zhuǎn)”、難在“分” Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《二輪復(fù)習(xí)數(shù)學(xué)文通用版講義:第一部分 第三層級(jí) 高考5個(gè)大題 題題研訣竅 函數(shù)與導(dǎo)數(shù)綜合問(wèn)題巧在“轉(zhuǎn)”、難在“分” Word版含解析(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、思維流程思維流程找突破口找突破口技法指導(dǎo)技法指導(dǎo)遷移搭橋遷移搭橋函數(shù)與導(dǎo)數(shù)問(wèn)題一般以函數(shù)為載體函數(shù)與導(dǎo)數(shù)問(wèn)題一般以函數(shù)為載體, 以導(dǎo)數(shù)為工以導(dǎo)數(shù)為工具具, 重點(diǎn)考查函數(shù)的一些性質(zhì)重點(diǎn)考查函數(shù)的一些性質(zhì), 如含參函數(shù)的單調(diào)性如含參函數(shù)的單調(diào)性、極值或最值的探求與討論極值或最值的探求與討論,復(fù)雜函數(shù)零點(diǎn)的討論復(fù)雜函數(shù)零點(diǎn)的討論,函函數(shù)不等式中參數(shù)范圍的討論數(shù)不等式中參數(shù)范圍的討論, 恒成立和能成立問(wèn)題的恒成立和能成立問(wèn)題的討論等討論等,是近幾年高考試題的命題熱點(diǎn)是近幾年高考試題的命題熱點(diǎn)對(duì)于這類綜對(duì)于這類綜合問(wèn)題,一般是先轉(zhuǎn)化合問(wèn)題,一般是先轉(zhuǎn)化(變形變形),再求導(dǎo),分解出基本,再求導(dǎo),分解出基本
2、函數(shù),分類討論研究其性質(zhì),再根據(jù)題意解決問(wèn)題函數(shù),分類討論研究其性質(zhì),再根據(jù)題意解決問(wèn)題.典例典例已知函數(shù)已知函數(shù) f(x)eln xax(aR R)(1)討論討論 f(x)的單調(diào)性;的單調(diào)性;(2)當(dāng)當(dāng) ae 時(shí),證明:時(shí),證明:xf(x)ex2ex0.快審題快審題求什么求什么想什么想什么討論函數(shù)的單調(diào)性,想到利用導(dǎo)數(shù)判斷討論函數(shù)的單調(diào)性,想到利用導(dǎo)數(shù)判斷證明不等式,想到對(duì)所證不等式進(jìn)行變形轉(zhuǎn)化證明不等式,想到對(duì)所證不等式進(jìn)行變形轉(zhuǎn)化給什么給什么用什么用什么已知函數(shù)的解析式,利用導(dǎo)數(shù)解題已知函數(shù)的解析式,利用導(dǎo)數(shù)解題差什么差什么找什么找什么證不等式時(shí),對(duì)不等式變形轉(zhuǎn)化后還不能直接判斷兩函數(shù)的
3、證不等式時(shí),對(duì)不等式變形轉(zhuǎn)化后還不能直接判斷兩函數(shù)的關(guān)系,應(yīng)找出所構(gòu)造函數(shù)的最值關(guān)系,應(yīng)找出所構(gòu)造函數(shù)的最值.穩(wěn)解題穩(wěn)解題(1)f(x)exa(x0),若若 a0,則,則 f(x)0,f(x)在在(0,)上單調(diào)遞增上單調(diào)遞增;若若 a0,則當(dāng),則當(dāng) 0 x0,當(dāng),當(dāng) xea時(shí),時(shí),f(x)0,所以只需證,所以只需證 f(x)exx2e,當(dāng)當(dāng) ae 時(shí),由時(shí),由(1)知,知,f(x)在在(0,1)上單調(diào)遞增,在上單調(diào)遞增,在(1,)上單調(diào)遞減,上單調(diào)遞減,所以所以 f(x)maxf(1)e.記記 g(x)exx2e(x0),則則 g(x) x1 exx2,所以當(dāng)所以當(dāng) 0 x1 時(shí),時(shí),g(x)
4、1 時(shí),時(shí),g(x)0,g(x)單調(diào)遞增,單調(diào)遞增,所以所以 g(x)ming(1)e.綜上,當(dāng)綜上,當(dāng) x0 時(shí),時(shí),f(x)g(x),即,即 f(x)exx2e,即即 xf(x)ex2ex0.法二法二:證:證 xf(x)ex2ex0,即證即證 exln xex2ex2ex0,從而等價(jià)于從而等價(jià)于 ln xx2exex.設(shè)函數(shù)設(shè)函數(shù) g(x)ln xx2,則則 g(x)1x1.所以當(dāng)所以當(dāng) x(0,1)時(shí),時(shí),g(x)0;當(dāng)當(dāng) x(1,)時(shí),時(shí),g(x)0,故故 g(x)在在(0,1)上單調(diào)遞增,在上單調(diào)遞增,在(1,)上單調(diào)遞減,上單調(diào)遞減,從而從而 g(x)在在(0,)上的最大值為上的最
5、大值為 g(1)1.設(shè)函數(shù)設(shè)函數(shù) h(x)exex,則,則 h(x)ex x1 ex2.所以當(dāng)所以當(dāng) x(0,1)時(shí),時(shí),h(x)0,故故 h(x)在在(0,1)上單調(diào)遞減,在上單調(diào)遞減,在(1,)上單調(diào)遞增,上單調(diào)遞增,從而從而 h(x)在在(0,)上的最小值為上的最小值為 h(1)1.綜上,當(dāng)綜上,當(dāng) x0 時(shí),時(shí),g(x)h(x),即即 xf(x)ex2ex0. 題后悟道題后悟道 函數(shù)與導(dǎo)數(shù)綜合問(wèn)題的關(guān)鍵函數(shù)與導(dǎo)數(shù)綜合問(wèn)題的關(guān)鍵(1)會(huì)求函數(shù)的極值點(diǎn),先利用方程會(huì)求函數(shù)的極值點(diǎn),先利用方程 f(x)0 的根,將函數(shù)的定義域分成若干個(gè)開(kāi)區(qū)間的根,將函數(shù)的定義域分成若干個(gè)開(kāi)區(qū)間,再列成表格,
6、最后依表格內(nèi)容即可寫(xiě)出函數(shù)的極值;再列成表格,最后依表格內(nèi)容即可寫(xiě)出函數(shù)的極值;(2)證明不等式,常構(gòu)造函數(shù),并利用導(dǎo)數(shù)法判斷新構(gòu)造函數(shù)的單調(diào)性,從而可證明原證明不等式,常構(gòu)造函數(shù),并利用導(dǎo)數(shù)法判斷新構(gòu)造函數(shù)的單調(diào)性,從而可證明原不等式成立;不等式成立;(3)不等式恒成立問(wèn)題除了用分離參數(shù)法不等式恒成立問(wèn)題除了用分離參數(shù)法, 還可以從分類討論和判斷函數(shù)的單調(diào)性入手還可以從分類討論和判斷函數(shù)的單調(diào)性入手,去求參數(shù)的取值范圍去求參數(shù)的取值范圍針對(duì)訓(xùn)練針對(duì)訓(xùn)練已知函數(shù)已知函數(shù) f(x)xln x,g(x)ax22,直線,直線 l:y(k3)xk2.(1)若曲線若曲線 yf(x)在在 xe 處的切線與
7、直線處的切線與直線 l 平行,求實(shí)數(shù)平行,求實(shí)數(shù) k 的值;的值;(2)若至少存在一個(gè)若至少存在一個(gè) x01,e使使 f(x0)1 時(shí),函數(shù)時(shí),函數(shù) f(x)的圖象恒在直線的圖象恒在直線 l 的上方,求的上方,求 k 的最大值的最大值解:解:(1)由已知得,由已知得,f(x)ln x1,且,且 yf(x)在在 xe 處的切線與直線處的切線與直線 l 平行,平行,所以所以 f(e)ln e12k3,解得,解得 k5.(2)因?yàn)橹辽俅嬖谝粋€(gè)因?yàn)橹辽俅嬖谝粋€(gè) x01,e使使 f(x0)g(x0)成立,成立,所以至少存在一個(gè)所以至少存在一個(gè) x 使使 xln x2ln xx成立成立令令 h(x)2ln
8、 xx,當(dāng),當(dāng) x1,e時(shí),時(shí),h(x)2 1ln x x20 恒成立,恒成立,因此因此 h(x)2ln xx在在1,e上單調(diào)遞增上單調(diào)遞增.故當(dāng)故當(dāng) x1 時(shí),時(shí),h(x)min0,所以實(shí)數(shù)所以實(shí)數(shù) a 的取值范圍為的取值范圍為(0,)(3)由已知得,由已知得,xln x(k3)xk2 在在 x1 時(shí)恒成立,時(shí)恒成立,即即 k0 在在 x1 時(shí)恒成立時(shí)恒成立.所以所以 m(x)在在(1,)上單調(diào)遞增,且上單調(diào)遞增,且 m(3)1ln 30,所以在所以在(1,)上存在唯一實(shí)數(shù)上存在唯一實(shí)數(shù) x0(x0(3,4)使使 m(x0)0,即,即 x0ln x020.當(dāng)當(dāng) 1xx0時(shí),時(shí),m(x)0,即
9、,即 F(x)x0時(shí),時(shí),m(x)0,即,即 F(x)0,所以所以 F(x)在在(1,x0)上單調(diào)遞減,在上單調(diào)遞減,在(x0,)上單調(diào)遞增上單調(diào)遞增故故 F(x)minF(x0)x0ln x03x02x01x0 x02 3x02x01x02(5,6)故故 kx02(kZ Z),所以,所以 k 的最大值為的最大值為 5.總結(jié)升華總結(jié)升華函數(shù)與導(dǎo)數(shù)壓軸題堪稱函數(shù)與導(dǎo)數(shù)壓軸題堪稱“龐然大物龐然大物”,所以征服它需要一定的膽量和勇氣,可以參變,所以征服它需要一定的膽量和勇氣,可以參變量分離、可把復(fù)雜函數(shù)分離為基本函數(shù)、可把題目分解成幾個(gè)小題、也可把解題步驟分解量分離、可把復(fù)雜函數(shù)分離為基本函數(shù)、可把
10、題目分解成幾個(gè)小題、也可把解題步驟分解為幾個(gè)小步,也可從邏輯上重新?lián)Q敘注重分步解答,這樣,即使解答不完整,也要做到為幾個(gè)小步,也可從邏輯上重新?lián)Q敘注重分步解答,這樣,即使解答不完整,也要做到盡可能多拿步驟分盡可能多拿步驟分同時(shí)要注意分類思想同時(shí)要注意分類思想、數(shù)形結(jié)合思想數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化等數(shù)學(xué)思想的運(yùn)用化歸與轉(zhuǎn)化等數(shù)學(xué)思想的運(yùn)用專題過(guò)關(guān)檢測(cè)專題過(guò)關(guān)檢測(cè)1(2018全國(guó)卷全國(guó)卷)已知函數(shù)已知函數(shù) f(x)ax2x1ex.(1)求曲線求曲線 yf(x)在點(diǎn)在點(diǎn)(0,1)處的切線方程;處的切線方程;(2)證明:當(dāng)證明:當(dāng) a1 時(shí),時(shí),f(x)e0.解:解:(1)因?yàn)橐驗(yàn)?f(x)ax2 2
11、a1 x2ex,所以所以 f(0)2,f(0)1,所以曲線所以曲線 yf(x)在在(0,1)處的切線方程是處的切線方程是 y12x,即,即 2xy10.(2)證明:當(dāng)證明:當(dāng) a1 時(shí),時(shí),f(x)e(x2x1ex1)ex.令令 g(x)x2x1ex1,則則 g(x)2x1ex1.當(dāng)當(dāng) x1 時(shí),時(shí),g(x)1 時(shí),時(shí),g(x)0,g(x)單調(diào)遞增單調(diào)遞增所以所以 g(x)g(1)0.因此因此 f(x)e0.2(2018全國(guó)卷全國(guó)卷)已知函數(shù)已知函數(shù) f(x)13x3a(x2x1)(1)若若 a3,求,求 f(x)的單調(diào)區(qū)間;的單調(diào)區(qū)間;(2)證明:證明:f(x)只有一個(gè)零點(diǎn)只有一個(gè)零點(diǎn)解:解
12、:(1)當(dāng)當(dāng) a3 時(shí),時(shí),f(x)13x33x23x3,f(x)x26x3.令令 f(x)0,解得,解得 x323或或 x32 3.當(dāng)當(dāng) x(,32 3)(32 3,)時(shí),時(shí),f(x)0;當(dāng)當(dāng) x(32 3,32 3)時(shí),時(shí),f(x)0,所以所以 f(x)0 等價(jià)于等價(jià)于x3x2x13a0.設(shè)設(shè) g(x)x3x2x13a,則則 g(x)x2 x22x3 x2x1 20,僅當(dāng)僅當(dāng) x0 時(shí),時(shí),g(x)0,所以所以 g(x)在在(,)上單調(diào)遞增上單調(diào)遞增故故 g(x)至多有一個(gè)零點(diǎn),從而至多有一個(gè)零點(diǎn),從而 f(x)至多有一個(gè)零點(diǎn)至多有一個(gè)零點(diǎn)又又 f(3a1)6a22a136a162160,
13、故故 f(x)有一個(gè)零點(diǎn)有一個(gè)零點(diǎn)綜上,綜上,f(x)只有一個(gè)零點(diǎn)只有一個(gè)零點(diǎn)3(2018西安質(zhì)檢西安質(zhì)檢)設(shè)函數(shù)設(shè)函數(shù) f(x)ln xkx(kR R)(1)若曲線若曲線 yf(x)在點(diǎn)在點(diǎn)(e,f(e)處的切線與直線處的切線與直線 x20 垂直垂直,求求 f(x)的單調(diào)性和極小值的單調(diào)性和極小值(其中其中 e 為自然對(duì)數(shù)的底數(shù)為自然對(duì)數(shù)的底數(shù));(2)若對(duì)任意的若對(duì)任意的 x1x20,f(x1)f(x2)0),曲線曲線 yf(x)在點(diǎn)在點(diǎn)(e,f(e)處的切線與直線處的切線與直線 x20 垂直,垂直,f(e)0,即,即1eke20,得,得 ke,f(x)1xex2xex2(x0)由由 f(
14、x)0,得,得 0 x0,得,得 xe,f(x)在在(0,e)上單調(diào)遞減,在上單調(diào)遞減,在(e,)上單調(diào)遞增,上單調(diào)遞增,當(dāng)當(dāng) xe 時(shí),時(shí),f(x)取得極小值,且取得極小值,且 f(e)ln eee2.f(x)的極小值為的極小值為 2.(2)由題意知對(duì)任意的由題意知對(duì)任意的 x1x20,f(x1)x10),則則 h(x)在在(0,)上單調(diào)遞減,上單調(diào)遞減,h(x)1xkx210 在在(0,)上恒成立,上恒成立,即當(dāng)即當(dāng) x0 時(shí),時(shí),kx2xx12214恒成立,恒成立,k14.故故 k 的取值范圍是的取值范圍是14,.4(2018沈陽(yáng)質(zhì)檢沈陽(yáng)質(zhì)檢)已知已知 f(x)exax22x(aR)(1
15、)求函數(shù)求函數(shù) f(x)的圖象恒過(guò)的定點(diǎn)坐標(biāo);的圖象恒過(guò)的定點(diǎn)坐標(biāo);(2)若若 f(x)ax1 恒成立,求恒成立,求 a 的值;的值;(3)在在(2)成立的條件下,證明:成立的條件下,證明:f(x)存在唯一的極小值點(diǎn)存在唯一的極小值點(diǎn) x0,且,且2f(x0)0,g(x)在在 R 上單調(diào)遞增,且當(dāng)上單調(diào)遞增,且當(dāng) x0 時(shí),時(shí),g(x)0,exax1 不能恒成立不能恒成立若若 a0,令,令 g(x)0,xln a.當(dāng)當(dāng) x(,ln a)時(shí),時(shí),g(x)0,函數(shù),函數(shù) g(x)單調(diào)遞增,單調(diào)遞增,函數(shù)函數(shù) g(x)在在 xln a 處取得極小值,處取得極小值,g(ln a)aaln a1.要使要
16、使 ex2ax2ax1 恒成立,恒成立,只需只需 aaln a10.設(shè)設(shè) h(a)aaln a1,則則 h(a)1ln a1ln a,當(dāng)當(dāng) a(0,1)時(shí),時(shí),h(a)0,函數(shù),函數(shù) h(a)單調(diào)遞增;單調(diào)遞增;當(dāng)當(dāng) a(1,)時(shí),時(shí),h(a)ln 2 時(shí),時(shí),m(x)0,當(dāng),當(dāng) xln 2 時(shí),時(shí),m(x)0,函數(shù)函數(shù) m(x)在在(,ln 2)上單調(diào)遞減,在上單調(diào)遞減,在(ln 2,)上單調(diào)遞增,上單調(diào)遞增,m(x)ex2x2 在在 xln 2 處取得極小值,且處取得極小值,且 m(ln 2)2ln 20,m(2)e260,m(x)有兩個(gè)變號(hào)零點(diǎn),有兩個(gè)變號(hào)零點(diǎn),f(x)存在唯一的極小值點(diǎn)存在唯一的極小值點(diǎn) x0,f(x0)0,即,即 ex02x020,f(x0)ex0 x202x02x02x202x02x20,m32 e322322e3250,x032,2,函數(shù)函數(shù) f(x)的極小值的極小值 f(x0)2x202,14 ,即即2f(x0)14.
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競(jìng)賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫(kù)試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫(kù)試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫(kù)試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測(cè)試題庫(kù)及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測(cè)工種技術(shù)比武題庫(kù)含解析
- 1 礦山應(yīng)急救援安全知識(shí)競(jìng)賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案