《高考數(shù)學總復習 專題02 第2節(jié) 函數(shù)的定義域與值域課件 文》由會員分享,可在線閱讀,更多相關《高考數(shù)學總復習 專題02 第2節(jié) 函數(shù)的定義域與值域課件 文(34頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、創(chuàng)新課堂創(chuàng)新課堂第一單元第一單元創(chuàng)新課堂創(chuàng)新課堂第一單元第一單元創(chuàng)新課堂創(chuàng)新課堂創(chuàng)新課堂創(chuàng)新課堂第一單元第一單元創(chuàng)新課堂創(chuàng)新課堂創(chuàng)新課堂創(chuàng)新課堂第一單元第一單元創(chuàng)新課堂創(chuàng)新課堂創(chuàng)新課堂創(chuàng)新課堂第二單元第二單元創(chuàng)新課堂創(chuàng)新課堂第二單元第二單元 函數(shù)、導數(shù)及其應用函數(shù)、導數(shù)及其應用第二節(jié)第二節(jié) 函數(shù)的定義域與值域函數(shù)的定義域與值域一、常見基本初等函數(shù)的定義域1分式函數(shù)中分母 2偶次根式函數(shù)被開方式 .3一次函數(shù)、二次函數(shù)的定義域均為 .4yax(a0且a1),ysin x,ycos x,定義域均為 .不等于零大于或等于0RR知識匯合知識匯合5ylogax(a0且a1)的定義域為 6ytan x的定
2、義域為 7實際問題中的函數(shù)定義域,除了使函數(shù)的解析式有 意義外,還要考慮實際問題對函數(shù)自變量的制約(0,)二、函數(shù)的值域1在函數(shù)概念的三要素中,值域是由 和 所確定的,因此,在研究函數(shù)值域時,既要重視對應關系的作用,又要特別注意定義域?qū)χ涤虻闹萍s作用定義域?qū)P系2基本初等函數(shù)的值域(1)ykxb(k0)的值域是 .(2)yax2bxc(a0)的值域是:當a0時,值域為 ;當a0時,值域為 Ry|y0y|y0R1,1R題型一函數(shù)的定義域【例1】(2010湖北)函數(shù) 的定義域為()A. B. C. (1,) D. (1,)0.5143ylogx 3,143,43,14典例分析典例分析 解: ,解
3、得x1,故選A.0.5log(43)0430 xx分析需要使解析式有意義,列不等式組來解 題型二復合函數(shù)的定義域【例2】已知函數(shù)f(x)的定義域為0,1,求下列函數(shù)的定義域:(1)f (x2);(2)f ( 1)x分析根據(jù)復合函數(shù)定義域的含義求解解:(1)f(x)的定義域是0,1, 要使f(x2)有意義,則必有0 x21, 解得1x1,f(x2)的定義域為1,1 (2)由0 11,得1 2. 1x4, 函數(shù)f( 1)的定義域為1,4xxx題型三函數(shù)的值域【例3】求下列函數(shù)的值域(1)y3x2x2,x1,3;(2)y2x .1 2x分析對于(1)利用二次函數(shù)在確定區(qū)間單調(diào)性求解或利用所在區(qū)間的圖
4、象判斷對于(2)利用換元法轉(zhuǎn)化為二次函數(shù)的值域問題,還可以通過單調(diào)性求解.解:(1)y3x2x232.對稱軸x1,3,函數(shù)在x處取得最小值,即ymin.結(jié)合函數(shù)的單調(diào)性知函數(shù)在x3處取得最大值,即ymax26,函數(shù)的值域為.16x23131616231223,261254(2)方法一:令 t(t0),則x .y1t2t 2 .二次函數(shù)對稱軸為t ,y 2 在0,)上是減函數(shù),ymax1.函數(shù)有最大值1,無最小值,其值域為(,11 2x212t12t1212t54方法二:y2x與y 均為定義域上的增函數(shù),y2x 是定義域為 上的增函數(shù),ymax2 1,無最小值函數(shù)的值域為(,11 2x1|2x
5、x1211 22 1 2x高考體驗高考體驗 1. (2010廣東)函數(shù)f(x)lg(x1)的定義域是()A. (2,) B. (1,)C. 1,) D. 2,)2. 下面是幾個同學分別畫出的滿足定義域為x|3x4,且x2,值域為y|1y2,y0的一個函數(shù)的圖象,其中畫正確的是 ()B解析:x10,得x1,故選B.練習鞏固練習鞏固 A解析:B項中定義域,值域均不符;C項中定義域滿足,但值域不滿足;D項中值域不滿足,定義域也不滿足只有A項正確 3. 下列說法正確有()函數(shù)的定義域可以為空集;函數(shù)y 的值域為R;一次函數(shù)ykxb(k0)的定義域、值域均為R;函數(shù)yax2bxc(a0)的最小值為 ;函
6、數(shù)yx22x(x2,4)的值域為y|y1 A. 0個 B. 1個 C. 2個 D. 3個8x244acbaB解析:錯,定義域為非空數(shù)集;錯,值域為y|y0;正確;錯,a0時,ymin , a0時,ymax ;錯,因為定義域為2,4,所以值域為0,8244acba244acba4. 函數(shù)y 的定義域為R,則k的取值范圍是() A. k0或k9 B. k1 C. 9k1 D. 0k1268kxxk4. B解析:kx26xk80恒成立,k0 顯然不符, 解得k1.0364 (8)0kk k 5. 函數(shù)f(x) (xR)的值域是() A. 0,1 B. 0,1) C. (0,1 D. (0,1)211
7、x5. C解析:1x21,0 1, y(0,1211x6.函數(shù)f(x) lg(3x1)的定義域是() A. B. C. D. 231xx1,31,131,131,3 B解析:由由解得 x1.10310 xx 137.設f(x)lg ,則f f 的定義域為()A. (4,0)(0,4) B. (4,1)(1,4)C. (2,1)(1,2) D. (4,2)(2,4)22xx2x2xB解析:f(x)lg 的定義域為(2,2),由解得4x1或1x4.22xx222222xx8.求下列函數(shù)的值域(1)y ;(2)y ;(3)y .213xx212xx368xx212677(1)2333xxyxxx值域
8、為y|yR且y 270,23yx解析:(2)2xx2 2 ,若2xx20,則y0;若2xx20,則無意義;若02xx2 ,則y ,函數(shù)的值域為(,0) .12x949494494( ,)9(3)由 得2x8, 36080 xx1030y定義域為-2,8函數(shù)為增函數(shù),函數(shù)的值域為10, 309.(2010山東)函數(shù)f(x)log2(3x1)的值域為() A. (0,) B. 0,) C. (1,) D. 1,)A解析:3x0,3x+11,令U=3x+1,則U1,由y=log2U的單調(diào)性可知y0,值域為(0,+),故選A.解析:函數(shù)f(x)的定義域為R,所以2x22axa10對xR恒成立,即2x22axa1,x22axa0恒成立,因此有(2a)24a0,解得1a0.答案:1,0