《天津市高中數(shù)學(xué)《簡(jiǎn)單的邏輯連接詞》課件 新人教版A版必修2》由會(huì)員分享,可在線閱讀,更多相關(guān)《天津市高中數(shù)學(xué)《簡(jiǎn)單的邏輯連接詞》課件 新人教版A版必修2(29頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、1.3 1.3 簡(jiǎn)單的邏輯聯(lián)結(jié)詞簡(jiǎn)單的邏輯聯(lián)結(jié)詞 學(xué)習(xí)目標(biāo)學(xué)習(xí)目標(biāo) 正確理解邏輯聯(lián)結(jié)詞“且”“或”“非”的含義和表示; 會(huì)判斷用“且”“或”“非”聯(lián)結(jié)成新命題的真假; 學(xué)習(xí)重點(diǎn)學(xué)習(xí)重點(diǎn) 了解邏輯聯(lián)結(jié)詞“且”“或”“非”的含義,并能正確的表示相關(guān)教學(xué)內(nèi)容 學(xué)習(xí)難點(diǎn)學(xué)習(xí)難點(diǎn) 理解用邏輯連接詞“且”“或”“非”聯(lián)結(jié)的新命題的真假性 pq串聯(lián)電路創(chuàng)設(shè)情景,引入新課創(chuàng)設(shè)情景,引入新課且:就是兩者都要、都有的意思且:就是兩者都要、都有的意思. .pq并聯(lián)電路或:就是兩者至少有一個(gè)的意思(可兼有)或:就是兩者至少有一個(gè)的意思(可兼有)非:就是否定的意思非:就是否定的意思 今后常用小寫字母p,q,r,sp,q
2、,r,s, ,表示命題。 探究新知,鞏固練習(xí)探究新知,鞏固練習(xí) 1.3.1 1.3.1 且且 (andand)下列命題中,命題間有什么關(guān)系? (1)12能被3整除;(2)12能被4整除;(3)12能被3整除且能被4整除;1.1.問題問題1 1:思考:思考:命題(3)是由命題(1)(2)使用聯(lián)結(jié)詞“且”聯(lián)結(jié)得到的新命題. 一般地,用聯(lián)結(jié)詞一般地,用聯(lián)結(jié)詞“且且”把命題把命題p p和命題和命題q q聯(lián)結(jié)起聯(lián)結(jié)起來,就得到一個(gè)新命題,記作來,就得到一個(gè)新命題,記作pqpq,讀作,讀作“p p且且q”q” 2.2.問題問題2 2思考:命題 pq的真假如何確定? 觀察下列各組命題,命題pq的真假與p、q
3、的真假有什么聯(lián)系? P:12能被能被3整除;整除;q:12能被能被4整除;整除;pq:12能被能被3整除且能被整除且能被4整除;整除;P:P:等腰三角形兩腰相等;等腰三角形兩腰相等;q:q:等腰三角形三條中線相等;等腰三角形三條中線相等;pq:等腰三角形兩邊相等且三條中線相等等腰三角形兩邊相等且三條中線相等. . P:6P:6是奇數(shù)是奇數(shù); ;q:6q:6是素?cái)?shù)是素?cái)?shù); ; p pq:6q:6是奇數(shù)且是素?cái)?shù)是奇數(shù)且是素?cái)?shù). .填空:一般地,我們規(guī)定:當(dāng)p,q都是真命題時(shí),pq是 ;當(dāng)p,q 兩個(gè)命題中有一個(gè)命題是假命題時(shí),pq是 .一句話概括:全真為真全真為真, ,有假即假有假即假. . 真命
4、題真命題假命題假命題命題命題pq的真假判斷方法:的真假判斷方法:pqp q真真真真真真假假假假真真假假假假假假假假假假真真探究:邏輯聯(lián)結(jié)詞“且”的含義與集合中學(xué)過的哪個(gè)概念的意義相同呢? 對(duì)對(duì)“且且”的理解,可聯(lián)想到集合中的理解,可聯(lián)想到集合中“交集交集”的概念的概念A(yù)B=AB=x xxAxA且且xBxB中的中的“且且”,是指是指“xAxA”、“xBxB”這兩個(gè)條件都這兩個(gè)條件都要滿足的意思要滿足的意思活動(dòng)探究活動(dòng)探究例例1 1:將下列命題用“且”聯(lián)結(jié)成新命題,并判斷他們的真假:(1)p:平行四邊形的對(duì)角線互相平分, q:平行四邊形的對(duì)角線相等;(2)p:菱形的對(duì)角線互相垂直, q:菱形的對(duì)角
5、線互相平分;(3)p:35是15的倍數(shù), q:35是7的倍數(shù). (3) pq : 35是15的倍數(shù)且是7的倍數(shù). p是假命題, pq是假命題假命題. (1)pq:平行四邊形的對(duì)角線互相平分且相等.q是假假命題命題,pq是假命題假命題.(2)pq :菱形的對(duì)角線互相垂直且平分. p、q都是真命題, pq是真命題真命題.例題分析解:解: 有些命題如含有有些命題如含有“和和”、“與與”、“既既,又又.”等詞的等詞的命題能用命題能用“且且”改寫成改寫成“pq”的形式的形式,例例2 2:用邏輯聯(lián)結(jié)詞“且”改寫下列命題,并判斷它們的真假.(1)1既既是奇數(shù),又又是素?cái)?shù);(2)2和和3都是素?cái)?shù). 解解:(:
6、(1) 1是奇數(shù)且且1是素?cái)?shù) , 假命題假命題 (2) 2是素?cái)?shù)且3是素?cái)?shù),真命題真命題1.3.2 1.3.2 或或 (or)(or)下列命題中,命題 間有什么關(guān)系? (1)27是7的倍數(shù);(2)27是9的倍數(shù);(3)27是7的倍數(shù)或是9的倍數(shù).1.1.問題問題1 1:思考:思考:命題(3)是由命題(1)(2)使用聯(lián)結(jié)詞“或”聯(lián)結(jié)得到的新命題. 一般地,用聯(lián)結(jié)詞一般地,用聯(lián)結(jié)詞“或或”把命題把命題p p和命題和命題q q聯(lián)結(jié)起聯(lián)結(jié)起來,就得到一個(gè)新命題,記作來,就得到一個(gè)新命題,記作p pq q,讀作,讀作“p p或或q”.q”.思考:命題 pq的真假如何確定? 觀察下列三組命題,命題pq的真
7、假與p、q 的真假有什么聯(lián)系? P:27是是7的倍數(shù)的倍數(shù);q:27是是9的倍數(shù)的倍數(shù);pq :27是是7的倍數(shù)或是的倍數(shù)或是9的倍數(shù)的倍數(shù).P:等腰梯形對(duì)角線垂直;等腰梯形對(duì)角線垂直;q:等腰梯形對(duì)角線平分;等腰梯形對(duì)角線平分;pq:等腰梯形對(duì)角線垂直或平分等腰梯形對(duì)角線垂直或平分.P:三邊對(duì)應(yīng)成比例的兩個(gè)三角形相似三邊對(duì)應(yīng)成比例的兩個(gè)三角形相似;q:三角對(duì)應(yīng)相等的兩個(gè)三角形相似三角對(duì)應(yīng)相等的兩個(gè)三角形相似; pq:三邊對(duì)應(yīng)成比例或三角對(duì)應(yīng)相等的兩三邊對(duì)應(yīng)成比例或三角對(duì)應(yīng)相等的兩 個(gè)三角形相似個(gè)三角形相似. 一般地,我們規(guī)定:當(dāng)p,q兩個(gè)命題中有 個(gè)命題是真命題時(shí),pq是 命題;當(dāng)p,q兩個(gè)
8、命題都是假命題時(shí),pq是 命題.一句話概括:有真即真有真即真, , 全假為假全假為假. . 一一真真假假命題命題pq的真假判斷方法:的真假判斷方法:p pq qp pq q真真真真真真假假假假真真假假假假假假真真真真真真探究:邏輯聯(lián)結(jié)詞探究:邏輯聯(lián)結(jié)詞“或或”的含義與集的含義與集合中學(xué)過的哪個(gè)概念的意義相同呢?合中學(xué)過的哪個(gè)概念的意義相同呢? 對(duì)對(duì)“或或”的理解,可聯(lián)想到集合中的理解,可聯(lián)想到集合中“并集并集”的概的概念念A(yù)B=AB=x xxAxA或或xBxB中的中的“或或”,它是指,它是指“xAxA”、“xBxB”中至少一個(gè)是成立的,即中至少一個(gè)是成立的,即xAxA且且x Bx B;也可以;
9、也可以x Ax A且且xBxB;也可以;也可以xAxA且且xBxB活動(dòng)探究活動(dòng)探究例例3 3:判斷下列命題的真假:判斷下列命題的真假:(1 1)2222;(2 2)集合)集合A A是是ABAB的子集或是的子集或是ABAB的子集;的子集;(3 3)周長(zhǎng)相等的兩個(gè)三角形全等或面積相等的兩個(gè)三)周長(zhǎng)相等的兩個(gè)三角形全等或面積相等的兩個(gè)三角形全等角形全等. . 解解:(:(1 1)p p:2=2 2=2 ;q q:22 22 p p是真命題是真命題,p pq q是真命題是真命題. .(3 3)p p:周長(zhǎng)相等的兩個(gè)三角形全等;:周長(zhǎng)相等的兩個(gè)三角形全等; q q:面積相等的兩個(gè)三角形全等:面積相等的兩
10、個(gè)三角形全等. .命題命題p p、q q都是假命題都是假命題, pqpq是假命題是假命題. .(2 2)p p:集合:集合A A是是ABAB的子集;的子集;q q:集合:集合A A是是ABAB的子集的子集 q q是真命題是真命題, pqpq是真命題是真命題. .例題分析例題分析 如果如果pqpq為真命題為真命題, ,那么那么pqpq一定是真一定是真命題嗎命題嗎? ?反之反之, ,如果如果pqpq為真命題為真命題, ,那么那么pqpq一定是真命題嗎一定是真命題嗎? ?總結(jié)思考總結(jié)思考 pqpq為真命題為真命題 pqpq是真命題是真命題pq是真命題是真命題 pq為真命題為真命題下列兩組命題間有什么
11、關(guān)系?下列兩組命題間有什么關(guān)系? (1 1)3535能被能被5 5整除;整除; (2 2)3535不能被不能被5 5整除整除. . (3 3)方程)方程 x x2 2+x+1=0+x+1=0有實(shí)數(shù)根;有實(shí)數(shù)根; (4 4)方程方程 x2+x+1=0無(wú)實(shí)數(shù)根無(wú)實(shí)數(shù)根1.3.3 1.3.3 非非 (not)(not) 一般地,對(duì)一個(gè)命題一般地,對(duì)一個(gè)命題p p全盤否定全盤否定,就得到一個(gè),就得到一個(gè)新命題,記作新命題,記作 p p,讀作,讀作“非非p”p”或或“p p的否定的否定”. .命題命題(2)(2)是命題是命題(1)(1)的否定,命題(的否定,命題(4 4)是命題)是命題(3 3)的否定)
12、的否定. .思考:思考:1.1.問題問題1 1填空:當(dāng)填空:當(dāng)p p為真命題時(shí),則為真命題時(shí),則p p為為 ;當(dāng);當(dāng)p p為假為假命題時(shí),則命題時(shí),則p p為為 . . 思考:命題思考:命題P P與與p p的真假關(guān)系如何?的真假關(guān)系如何?一句話概括:一句話概括:真假相反真假相反p p與與p p真假性相反真假性相反真命題真命題假命題假命題 p p p p真真假假假假真真 對(duì)對(duì)“非非”的理解,可聯(lián)想到集合中的的理解,可聯(lián)想到集合中的“補(bǔ)集補(bǔ)集”概念,若命題概念,若命題p p對(duì)應(yīng)于集合對(duì)應(yīng)于集合P P,則命題非則命題非p p就對(duì)應(yīng)著集合就對(duì)應(yīng)著集合P P在全集在全集U U中的補(bǔ)中的補(bǔ)集集C CU U
13、P P探究探究1:邏輯聯(lián)結(jié)詞邏輯聯(lián)結(jié)詞“非非”的含義與集合的含義與集合中學(xué)過的哪個(gè)概念的意義相同呢?中學(xué)過的哪個(gè)概念的意義相同呢?活動(dòng)探究活動(dòng)探究探究探究2:命題的否定與否命題是不是同一命題的否定與否命題是不是同一概念呢?他們具有怎樣的區(qū)別呢?概念呢?他們具有怎樣的區(qū)別呢?命題的否定與否命題是完全不同的概念命題的否定與否命題是完全不同的概念 (1)原命題)原命題“若若P則則q” 的形式,它的的形式,它的非命題非命題“若若p,則,則 q”;而它的;而它的否命題為否命題為 “若若p,則,則q”. (2)命題的否定(非)的真假性與原命題命題的否定(非)的真假性與原命題相反相反;而否命;而否命題的真假
14、性與原命題題的真假性與原命題無(wú)關(guān)無(wú)關(guān).命題的否定與否命題的區(qū)別命題的否定與否命題的區(qū)別例:寫出命題例:寫出命題p: “正方形的四條邊相等正方形的四條邊相等”的否定與的否定與它的否命題它的否命題.命題命題p: P的否命題:的否命題:正方形的四條邊不相等正方形的四條邊不相等.若一個(gè)四邊形不是正方形,則它的四若一個(gè)四邊形不是正方形,則它的四條邊不相等條邊不相等.例例4 4:寫出下列命題的否定,并判斷它們的真假:寫出下列命題的否定,并判斷它們的真假:(1 1)p p: 是周期函數(shù);是周期函數(shù); (2 2)p p: ;(3 3)p p:空集是集合:空集是集合A A的子集的子集. .32sinyx解:(解
15、:(1 1)p p: 不是周期函數(shù)不是周期函數(shù). . p p是是真真命題,命題, p p是是假假命題命題. .(2 2)p p: ; p p是是假假命題,命題, p p是是真真命題命題. . (3 3)p p:空集不是集合:空集不是集合A A的子集的子集. . p p是是真真命題,命題, p p是是假假命題命題. .sinyx32例題分析例題分析填寫下表填寫下表 注意“非”對(duì)關(guān)鍵詞的否定方式詞語(yǔ)詞語(yǔ)否定否定詞語(yǔ)詞語(yǔ)否定否定等于等于都是都是大于大于至多有至多有一個(gè)一個(gè)小于小于至少有至少有一個(gè)一個(gè)是是不等于不等于不大于不大于不小于不小于不是不是不都是不都是至少有兩個(gè)至少有兩個(gè)一個(gè)都沒有一個(gè)都沒有1
16、.命題命題“方程方程 的解是的解是 ”中,中,使用邏輯詞的情況是(使用邏輯詞的情況是( ) A.沒有使用邏輯聯(lián)結(jié)詞沒有使用邏輯聯(lián)結(jié)詞 B.使用了邏輯聯(lián)結(jié)詞使用了邏輯聯(lián)結(jié)詞“或或” C. 使用了邏輯聯(lián)結(jié)詞使用了邏輯聯(lián)結(jié)詞“且且” D. 使用了邏輯聯(lián)結(jié)詞使用了邏輯聯(lián)結(jié)詞“或或”與與“且且”1x1xB2.在下列命題中在下列命題中 (1)命題)命題“不等式不等式 沒有實(shí)數(shù)解沒有實(shí)數(shù)解”;(2)命題)命題“1是偶數(shù)或奇數(shù)是偶數(shù)或奇數(shù)”;(3)命題)命題“ 既屬于集合既屬于集合 ,也屬于集合,也屬于集合 ”;(4)命題)命題“ ” 其中,真命題為其中,真命題為_.0|2|x2BAAUQR(2)()(4)3
17、. 命題命題p:“不等式不等式 的解集為的解集為 ”;命題;命題q:“不等式不等式 的解集為的解集為 ”,則,則 ( )Ap真真q假假Bp假假q真真C命題命題“p且且q”為真為真D命題命題“p或或q”為假為假 01xx10|xxx或42x2|xxD 4.在一次模擬射擊游戲中,小李連續(xù)在一次模擬射擊游戲中,小李連續(xù)射擊了兩次,設(shè)命題射擊了兩次,設(shè)命題p:“第一次射擊中第一次射擊中靶靶”,命題,命題q:“第二次射擊中靶第二次射擊中靶”,試,試用,用,p、q及邏輯聯(lián)結(jié)詞及邏輯聯(lián)結(jié)詞“或或”“”“且且”“”“非非”表示下列命題:表示下列命題:(1)兩次射擊均中靶;)兩次射擊均中靶;(2)兩次射擊至少有
18、一次中靶)兩次射擊至少有一次中靶.pqpq5.5.若命題若命題“p”p”與命題與命題“p pq q”都是真都是真命題,那么(命題,那么( )A A命題命題p p與命題與命題q q的真假相同的真假相同 B B命題命題q q一定是真命題一定是真命題 C C命題命題q q不一定是真命題不一定是真命題 D D命題命題p p不一定是真命題不一定是真命題 B B6.設(shè)命題設(shè)命題p:實(shí)數(shù)實(shí)數(shù)x滿足滿足 , 命題命題q:實(shí)數(shù):實(shí)數(shù)x滿足滿足 ,若若p且且q為真,則實(shí)數(shù)為真,則實(shí)數(shù) x的取值的取值范圍為范圍為 . 2430 xx13x260 xx(1)掌握邏輯聯(lián)結(jié)詞“且、或、非”的含義(2)正確應(yīng)用邏輯聯(lián)結(jié)詞“且、或、非”解決問題(3)掌握真值表并會(huì)應(yīng)用真值表解決問題 pqpqpqp真 真 真真假真 假 假真假假 真 假真真假 假 假假真自主總結(jié)自主總結(jié)課本P18:習(xí)題1.3 A組 第1、2題 作業(yè)布置作業(yè)布置