廣西桂林市逸仙中學高二數學 《排列與排列數公式》課件

上傳人:沈*** 文檔編號:51534962 上傳時間:2022-01-27 格式:PPT 頁數:12 大?。?85KB
收藏 版權申訴 舉報 下載
廣西桂林市逸仙中學高二數學 《排列與排列數公式》課件_第1頁
第1頁 / 共12頁
廣西桂林市逸仙中學高二數學 《排列與排列數公式》課件_第2頁
第2頁 / 共12頁
廣西桂林市逸仙中學高二數學 《排列與排列數公式》課件_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《廣西桂林市逸仙中學高二數學 《排列與排列數公式》課件》由會員分享,可在線閱讀,更多相關《廣西桂林市逸仙中學高二數學 《排列與排列數公式》課件(12頁珍藏版)》請在裝配圖網上搜索。

1、排 列 (二)1.1.排列的定義是什么?排列的定義是什么? 一般地,從一般地,從n個不同元素中取出個不同元素中取出m(m n)個元素,按照)個元素,按照一定的順序一定的順序排成一列,叫做排成一列,叫做從從n個不同元素中取出個不同元素中取出m個元素的一個排列。個元素的一個排列。 溫故知新: 兩個排列相同當且僅當這兩個排列的元兩個排列相同當且僅當這兩個排列的元素完全相同,而且元素的排列的順序也完全素完全相同,而且元素的排列的順序也完全相同。相同。 2.2.什么是相同排列?什么是相同排列? A排列的第排列的第一個字母一個字母nm元素總數元素總數m,n所滿足的條件是:所滿足的條件是:mN+,nN+ m

2、n無重復元素的排列數公式:無重復元素的排列數公式:取出的元素數取出的元素數排列數定義:排列數定義:從從n個不同元素中任取個不同元素中任取m(mn)個)個元素的所有排列的個數叫做從元素的所有排列的個數叫做從n個不同元素中任取個不同元素中任取m元素的排列數,記作元素的排列數,記作mnA第第1步,先填第步,先填第1個位置的元素,從個位置的元素,從n個元素中任選一個元素中任選一個,有個,有n種方法。第種方法。第2步確定第步確定第2個位置的元素,可從個位置的元素,可從剩下的剩下的n-1個元素中任取個元素中任取1個填空,有個填空,有n-1種方法。種方法。根據分步計數原理得根據分步計數原理得 12 nnAn

3、求從求從n個不同元素中任取個不同元素中任取2個元素的排列數個元素的排列數2nA新課:可以按依次填可以按依次填3個空位來考慮得個空位來考慮得 213 nnnAn 一般地,從一般地,從n個不同元素中任取個不同元素中任取m個不同元素的個不同元素的排列數可用占位法計算排列數可用占位法計算位位位 m位解:分解:分m個步驟完成:個步驟完成:第一步確定第一個位置上的元素:有第一步確定第一個位置上的元素:有n種方法種方法第二步確定第二個位置上的元素:有(第二步確定第二個位置上的元素:有(n-1)種方法)種方法第三步確定第三個位置上的元素:有(第三步確定第三個位置上的元素:有(n-2)種方法)種方法第第m步確定

4、第步確定第m個位置上的元素:有個位置上的元素:有n -(m-1)=(n)種方法。)種方法。 每一種填法就得到一個排列;反過來,任一個排每一種填法就得到一個排列;反過來,任一個排列總可以由這樣的一種填法得到。列總可以由這樣的一種填法得到。由分步計數原理得出:由分步計數原理得出:121 mnnnnAmn公式的特點:公式的特點:m個連續(xù)自然數的連乘積,個連續(xù)自然數的連乘積,最大因數為最大因數為n,以后依次減,以后依次減1,最小因數是(,最小因數是(n-m+1)全排列全排列:n個不同元素全部取出的一個排列,叫做個不同元素全部取出的一個排列,叫做n個個不同元素的一個不同元素的一個全排列全排列。 1221

5、 nnnAnn階乘階乘:自然數:自然數1到到n的連乘積的連乘積123n稱為稱為n的階乘的階乘,記作,記作n!規(guī)定規(guī)定0!=1無重復元素的排列數公式的階乘形式無重復元素的排列數公式的階乘形式 121121121 mnmnmnmnmnnnnAmn= n!(nm) !mnA n!(nm) ! 一般地:連乘形式用于一般地:連乘形式用于 值的計算;階乘形式值的計算;階乘形式用于有關用于有關 的式子化簡和證明。的式子化簡和證明。mnAmnA 排列數公式:排列數公式:)nmNm, n) 1mn()2n)(1n(nA*mn 且( 全排列公式:全排列公式:! n123)2n)(1n(nAnn 說明說明:(1)

6、排列數公式還可以寫成:排列數公式還可以寫成: (2)規(guī)定:規(guī)定:0!=1)nmNm, n)!mn(! nA*mn且(例例1:計算:計算: 316A66A46A(n1)?。。╪3)?。?! 3161 A解:3360141516 !6266A720123456 463 A6 5 4 3360 !3!14nn!3!321nnnn23212nnnn值:求下列各式中的例n:2 .432;14011983412nnnnAAAA 由排列數公式得解: 1,211402212212nnnnnnn,整理得0693542nn , 03234nn,Nn. 3n3423nn或 由排列數公式得2!10! 94!8! 83nn!8910! 894!8! 83nnnn,化簡得078192nn136nn,解得Nnnn91080由Nnn且81. 6n2 3 6練習:課本第101頁練習第 、 、題121 mnnnnAmnmnA n!(nm) !小結:1)排列的概念:用自己的話敘述一下。2)排列數公式 多用于計算多用于證明化簡多用于證明化簡102作業(yè):課本第頁第1、2、3題

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!