2019-2020年高中數(shù)學(xué)《合情推理》教案2 新人教A版選修2-2.doc
《2019-2020年高中數(shù)學(xué)《合情推理》教案2 新人教A版選修2-2.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)《合情推理》教案2 新人教A版選修2-2.doc(3頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)《合情推理》教案2 新人教A版選修2-2 1.教學(xué)目標(biāo): (1)知識與技能: 掌握歸納推理的技巧,并能運(yùn)用解決實(shí)際問題。 (2)過程與方法: 通過“自主、合作與探究”實(shí)現(xiàn)“一切以學(xué)生為中心”的理念。 (3)情感、態(tài)度與價(jià)值觀: 感受數(shù)學(xué)的人文價(jià)值,提高學(xué)生的學(xué)習(xí)興趣,使其體會到數(shù)學(xué)學(xué)習(xí)的美感。 2.教學(xué)重點(diǎn):歸納推理及方法的總結(jié)。 3.教學(xué)難點(diǎn):歸納推理的含義及其具體應(yīng)用。 4.教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。 5.教學(xué)設(shè)想:提供一個舞臺, 讓學(xué)生展示自己的才華,這將極大地調(diào)動學(xué)生的積極性,增強(qiáng)學(xué)生的榮譽(yù)感,培養(yǎng)學(xué)生獨(dú)立分析問題和解決問題的能力,體現(xiàn)了“自主探究”,同時,也鍛煉了學(xué)生敢想、敢說、敢做的能力。 6.教學(xué)過程: 學(xué)生探究過程: ①引入:“阿基米德曾對國王說,給我一個支點(diǎn),我將撬起整個地球!” ②提問:大家認(rèn)為可能嗎?他為何敢夸下如此????理由何在? ③探究:他是怎么發(fā)現(xiàn)“杠桿原理”的? 從而引入兩則小典故:(圖片展示-阿基米德的靈感) A:一個小孩,為何輕輕松松就能提起一大桶水? B:修筑河堤時,奴隸們是怎樣搬運(yùn)巨石的? 正是基于這兩個發(fā)現(xiàn),阿基米德大膽地猜想,然后小心求證,終于發(fā)現(xiàn)了偉大的“杠桿原理”。 ④思考:整個過程對你有什么啟發(fā)? ⑤啟發(fā):在教師的引導(dǎo)下歸納出:“科學(xué)離不開生活,離不開觀察,也離不開猜想和證明”。 生活 觀察 猜想 證明 歸納推理的發(fā)展過程 (2)皇冠明珠 追逐先輩的足跡,接觸數(shù)學(xué)皇冠上最璀璨的明珠 — “歌德巴赫猜想”。 世界近代三大數(shù)學(xué)難題之一。哥德巴赫是德國一位中學(xué)教師,也是一位著名的數(shù)學(xué)家,生于1690年,1725年當(dāng)選為俄國彼得堡科學(xué)院院士。1742年,哥德巴赫在教學(xué)中發(fā)現(xiàn),每個不小于6的偶數(shù)都是兩個素?cái)?shù)(只能被和它本身整除的數(shù))之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫(Goldbach)寫信給當(dāng)時的大數(shù)學(xué)家歐拉(Euler),提出了以下的猜想: (a) 任何一個≥6之偶數(shù),都可以表示成兩個奇質(zhì)數(shù)之和。 (b) 任何一個≥9之奇數(shù),都可以表示成三個奇質(zhì)數(shù)之和。 這就是著名的哥德巴赫猜想。歐拉在6月30日給他的回信中說,他相信這個猜想是正確的,但他不能證明。敘述如此簡單的問題,連歐拉這樣首屈一指的數(shù)學(xué)家都不能證明,這個猜想便引起了許多數(shù)學(xué)家的注意。從提出這個猜想至今,許多數(shù)學(xué)家都不斷努力想攻克它,但都沒有成功。當(dāng)然曾經(jīng)有人作了些具體的驗(yàn)證工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 =5 + 13, . . . . 等等。有人對33108以內(nèi)且大過6之偶數(shù)一一進(jìn)行驗(yàn)算,哥德巴赫猜想(a)都成立。但驗(yàn)格的數(shù)學(xué)證明尚待數(shù)學(xué)家的努力。從此,這道著名的數(shù)學(xué)難題引起了世界上成千上萬數(shù)學(xué)家的注意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數(shù)學(xué)皇冠上一顆可望不可及的“明珠”。到了20世紀(jì)20年代,才有人開始向它靠近。1920年、挪威數(shù)學(xué)家布爵用一種古老的篩選法證明,得出了一個結(jié)論:每一個比大的偶數(shù)都可以表示為(99)。這種縮小包圍圈的辦法很管用,科學(xué)家們于是從(9十9)開始,逐步減少每個數(shù)里所含質(zhì)數(shù)因子的個數(shù),直到最后使每個數(shù)里都是一個質(zhì)數(shù)為止,這樣就證明了“哥德巴赫”。 思考:其他偶數(shù)是否也有類似的規(guī)律? ③討論:組織學(xué)生進(jìn)行交流、探討。 ④檢驗(yàn):2和4可以嗎?為什么不行? ⑤歸納:通過剛才的探究,由學(xué)生歸納“歸納推理”的定義及特點(diǎn)。 數(shù)學(xué)建構(gòu) ●把從個別事實(shí)中推演出一般性結(jié)論的推理,稱為歸納推理(簡稱歸納). 注:歸納推理的特點(diǎn); 簡言之,歸納推理是由部分到整體、由特殊到一般的推理。 ●歸納推理的一般步驟: 概括、推廣 實(shí)驗(yàn)、觀察 猜測一般性結(jié)論 師生活動 例1 前提:蛇是用肺呼吸的,鱷魚是用肺呼吸的,海龜是用肺呼吸的,蜥蜴是用肺呼吸的。蛇、鱷魚、海龜、蜥蜴都是爬行動物. 結(jié)論:所有的爬行動物都是用肺呼吸的。 例2 前提:三角形的內(nèi)角和是1800,凸四邊形的內(nèi)角和是3600,凸五邊形的內(nèi)角和是5400,…… 結(jié)論:凸n邊形的內(nèi)角和是(n—2)1800。 例3 探究:上述結(jié)論都成立嗎? 強(qiáng)調(diào):歸納推理的結(jié)果不一定成立! —— “ 一切皆有可能!” 例 4 已知數(shù)列{}的第1項(xiàng),且(n=1,2,3,…),試歸納出這個數(shù)列的通項(xiàng)公式. ①探索:先讓學(xué)生獨(dú)立進(jìn)行思考。 ②活動:“千里走單騎” — 鼓勵學(xué)生說出自己的解題思路。 ③活動:“圓桌會議” — 鼓勵其他同學(xué)給予評價(jià),對在哪里?錯在哪里?還有沒有更好的方法? 【設(shè)計(jì)意圖】:提供一個舞臺, 讓學(xué)生展示自己的才華,這將極大地調(diào)動學(xué)生的積極性,增強(qiáng)學(xué)生的榮譽(yù)感,培養(yǎng)學(xué)生獨(dú)立分析問題和解決問題的能力,體現(xiàn)了“自主探究”,同時,也鍛煉了學(xué)生敢想、敢說、敢做的能力。 【一點(diǎn)心得】:在“千里走單騎”和“圓桌會議”的探究活動中,教師一定要以“鼓勵和表揚(yáng)”為主,面帶微笑,消除學(xué)生的恐懼感,提高學(xué)生的自信心. 分析:數(shù)列的通項(xiàng)公式表示的是數(shù)列{}的第n項(xiàng)與序號 n 之間的對應(yīng)關(guān)系.為此,我們先根據(jù)已知的遞推公式,算出數(shù)列的前幾項(xiàng). 解:當(dāng)n=1時,; 當(dāng) n =2時,; 當(dāng)n =3時,; 當(dāng)n=4時,. 觀察可得,數(shù)列的前 4 項(xiàng)都等于相應(yīng)序號的倒數(shù).由此猜想,這個數(shù)列的通項(xiàng)公式為 . 在例4中,我們通過歸納得到了關(guān)于數(shù)列通項(xiàng)公式的一個猜想.雖然猜想是否正確還有待嚴(yán)格的證明,但這個猜想可以為我們的研究提供一種方向. 另解:因?yàn)椋? 所以,即。 所以數(shù)列{}是以1為首項(xiàng),1為公差的等差數(shù)列,故 ,即. ⑵能力培養(yǎng)(例4拓展) 例4拓展:,求 ①思考:怎么求?組織學(xué)生進(jìn)行探究,尋找規(guī)律。 ②歸納:由學(xué)生討論,歸納技巧,得到技巧②和③。 技巧②:有整數(shù)和分?jǐn)?shù)時,往往將整數(shù)化為分?jǐn)?shù). 技巧③:當(dāng)分子分母都在變化時,往往統(tǒng)一分子 (或分母),再尋找另一部分的變化規(guī)律. 7.教學(xué)反思: (1)歸納推理是由部分到整體,從特殊到一般的推理。通常歸納的個體數(shù)目越多,越具有代表性,那么推廣的一般性命題也會越可靠,它是一種發(fā)現(xiàn)一般性規(guī)律的重要方法。 (2)歸納推理的一般步驟: 通過觀察個別情況發(fā)現(xiàn)某些相同的性質(zhì) 從已知的相同性質(zhì)中推出一個明確表述的一般命題(猜想) (3)合情推理使學(xué)生熟悉了掌握知識的過程和方法,提高了觀察與分析問題的能力,使得教學(xué)過程變成了學(xué)生積極參與的智力活動的過程,鍛煉和培養(yǎng)了他們深刻的思維能力,從而促進(jìn)創(chuàng)造能力的提高。 1.(xx年上海卷)已知函數(shù)=+有如下性質(zhì):如果常數(shù)>0,那么該函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù). (1)如果函數(shù)=+(>0)的值域?yàn)?,+∞,求的值; (2)研究函數(shù)=+(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由; (3)對函數(shù)=+和=+(常數(shù)>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)=+(是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論). 解(1) 函數(shù)y=x+(x>0)的最小值是2,則2=6, ∴b=log29. (2)設(shè)0- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 合情推理 2019-2020年高中數(shù)學(xué)合情推理教案2 新人教A版選修2-2 2019 2020 年高 數(shù)學(xué) 合情 推理 教案 新人 選修
鏈接地址:http://m.italysoccerbets.com/p-5428134.html