《勾股定理 (2)》由會員分享,可在線閱讀,更多相關(guān)《勾股定理 (2)(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、勾股定理》一課的課堂教學(xué)
第一個環(huán)節(jié):探索勾股定理的教學(xué)
師(出示4幅圖形和表格):觀察、計算各圖中正方形A、B、C的面積,完成表格,你有什么發(fā)現(xiàn)?
?
A的面積
B的面積
C的面積
圖1
?
?
?
圖2
?
?
?
圖3
?
?
?
圖4
?
?
?
生:從表中可以看出A、B兩個正方形的面積之和等于正方形C的面積。并且,從圖中可以看出正方形A、B的邊就是直角三角形的兩條直角邊,正方形C的邊就是直角三角形的斜邊,根據(jù)上面的結(jié)果,可以得出結(jié)論:直角三角形的兩條直角邊的平方和等于斜邊的平方。
這里,教師設(shè)計問題情境,讓學(xué)生探索發(fā)現(xiàn)“數(shù)”與“形”的密
2、切關(guān)聯(lián),形成猜想,主動探索結(jié)論,訓(xùn)練了學(xué)生的歸納推理的能力,數(shù)形結(jié)合的思想自然得到運用和滲透,“面積法”也為后面定理的證明做好了鋪墊,雙基教學(xué)寓于學(xué)習(xí)情境之中。
第二個環(huán)節(jié):證明勾股定理的教學(xué)
教師給各小組奮發(fā)制作好的直角三角形和正方形紙片,先分組拼圖探究,在交流、展示,讓學(xué)生在實踐探究活動中形成新的能力 (試圖發(fā)現(xiàn)拼圖和證明的規(guī)律:同一個圖形面積用不同的方法表示)。
學(xué)生展示略
通過小組探究、展示證明方法,讓學(xué)生把已有的面積計算知識與要證明的代數(shù)式聯(lián)系起來,并試圖通過幾何意義的理解構(gòu)造圖形,讓學(xué)生在探求證明方法的過程中深刻理解數(shù)學(xué)思想方法,提升創(chuàng)新思維能力。
第三個環(huán)節(jié):運用勾股定
3、理的教學(xué)
師(出示右圖):右圖是由兩個正方形
組成的圖形,能否剪拼為一個面積不變的新
的正方形,若能,看誰剪的次數(shù)最少。
生(出示右圖):可以剪拼成一個面積
不變的新的正方形,設(shè)原來的兩個正方形的
邊長分別是a、b,那么它們的面積和就是
a2+ b2,由于面積不變,所以新正方形的面積
應(yīng)該是a2+ b2,所以只要是能剪出兩個以a、b
為直角邊的直角三角形,把它們重新拼成一個
邊長為 a2+ b2 的正方形就行了。
問題是數(shù)學(xué)的心臟,學(xué)習(xí)數(shù)學(xué)的核心就在于提高解決問題的能力。教師在此設(shè)置問題不僅是檢驗勾股定理的靈活運用,更是對勾股定理探究方法和證明思想(數(shù)形結(jié)合思想
4、、面積割補(bǔ)的方法、轉(zhuǎn)化和化歸思想)的綜合運用,從而讓學(xué)生在解決問題中發(fā)展創(chuàng)新能力。
第四個環(huán)節(jié):挖掘勾股定理文化價值
師:勾股定理揭示了直角三角形三邊之間的數(shù)量關(guān)系,見數(shù)與形密切聯(lián)系起來。它在培養(yǎng)學(xué)生數(shù)學(xué)計算、數(shù)學(xué)猜想、數(shù)學(xué)推斷、數(shù)學(xué)論證和運用數(shù)學(xué)思想方法解決實際問題中都具有獨特的作用。勾股定理最早記載于公元前十一世紀(jì)我國古代的《周髀算經(jīng)》,在我國古籍《九章算術(shù)》中提出“出入相補(bǔ)”原理證明勾股定理。在西方勾股定理又被成為“畢達(dá)哥拉斯定理”,是歐式幾何的核心定理之一,是平面幾何的重要基礎(chǔ),關(guān)于勾股定理的證明,吸引了古今中外眾多數(shù)學(xué)家、物理學(xué)家、藝術(shù)家,甚至美國總統(tǒng)也投入到勾股定理的證明中來。它的發(fā)現(xiàn)、證明和應(yīng)用都蘊(yùn)涵著豐富的數(shù)學(xué)人文內(nèi)涵,希望同學(xué)們課后查閱相關(guān)資料,了解數(shù)學(xué)發(fā)展的歷史和數(shù)學(xué)家的故事,感受數(shù)學(xué)的價值和數(shù)學(xué)精神,欣賞數(shù)學(xué)的美。