《高中數(shù)學(xué)人教A版必修二 第二章 點(diǎn)、直線、平面之間的位置關(guān)系 學(xué)業(yè)分層測(cè)評(píng)10 含答案》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)人教A版必修二 第二章 點(diǎn)、直線、平面之間的位置關(guān)系 學(xué)業(yè)分層測(cè)評(píng)10 含答案(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2019版數(shù)學(xué)精品資料(人教版)
學(xué)業(yè)分層測(cè)評(píng)(十)
(建議用時(shí):45分鐘)
[達(dá)標(biāo)必做]
一、選擇題
1.若直線l不平行于平面α,且l?α,則( )
A.α內(nèi)的所有直線與l異面
B.α內(nèi)不存在與l平行的直線
C.α內(nèi)存在唯一的直線與l平行
D.α內(nèi)的直線與l都相交
【解析】 直線l不平行于平面α,且l?α,所以l與α相交,故選B.
【答案】 B
2.已知m,n是兩條直線,α,β是兩個(gè)平面.有以下說(shuō)法:
①m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,則α∥β;②若m∥α,m∥β,則α∥β;③若m∥α,n∥β,m∥n,則α∥β.
其中正確的個(gè)數(shù)
2、是( )
A.0 B.1
C.2 D.3
【解析】 把符號(hào)語(yǔ)言轉(zhuǎn)換為文字語(yǔ)言或圖形語(yǔ)言.可知①是面面平行的判定定理;②③中平面α、β還有可能相交,所以選B.
【答案】 B
3.平面α內(nèi)有不共線的三點(diǎn)到平面β的距離相等且不為零,則α與β的位置關(guān)系為( )
A.平行 B.相交
C.平行或相交 D.可能重合
【解析】 若三點(diǎn)分布于平面β的同側(cè),則α與β平行,若三點(diǎn)分布于平面β的兩側(cè),則α與β相交.
【答案】 C
4.如果AB、BC、CD是不在同一平面內(nèi)的三條線段,則經(jīng)過(guò)它們中點(diǎn)的平面和直線AC的位置關(guān)系是( )
【導(dǎo)學(xué)號(hào):09960062】
A.平行 B.相交
C.
3、AC在此平面內(nèi) D.平行或相交
【解析】 把這三條線段放在正方體內(nèi)如圖,
顯然AC∥EF,AC?平面EFG.
EF?平面EFG,故AC∥平面EFG.故選A.
【答案】 A
5.如圖2-2-8,P為平行四邊形ABCD所在平面外一點(diǎn),Q為PA的中點(diǎn),O為AC與BD的交點(diǎn),下面說(shuō)法錯(cuò)誤的是( )
圖2-2-8
A.OQ∥平面PCD
B.PC∥平面BDQ
C.AQ∥平面PCD
D.CD∥平面PAB
【解析】 因?yàn)镺為?ABCD對(duì)角線的交點(diǎn),
所以AO=OC,又Q為PA的中點(diǎn),
所以QO∥PC.
由線面平行的判定定理,可知A、B正確,
又ABCD為平行四邊形,
4、所以AB∥CD,
故CD∥平面PAB,故D正確.
【答案】 C
二、填空題
6.(2016·蚌埠高二檢測(cè))下列四個(gè)正方體圖形中,A、B為正方體的兩個(gè)頂點(diǎn),M、N、P分別為其所在棱的中點(diǎn),能得出AB∥平面MNP的圖形的序號(hào)是________(寫(xiě)出所有符合要求的圖形序號(hào)).
圖2-2-9
【解析】?、僭O(shè)MP中點(diǎn)為O,連接NO.易得AB∥NO,
又AB?平面MNP,
所以AB∥平面MNP.
②若下底面中心為O,易知NO∥AB,NO?平面MNP,
所以AB與平面MNP不平行.
③易知AB∥MP,所以AB∥平面MNP.
④易知存在一直線MC∥AB,且MC?平面MNP,
所以
5、AB與平面MNP不平行.
【答案】?、佗?
7.(2016·廣州高一檢測(cè))在如圖2-2-10所示的幾何體中,三個(gè)側(cè)面AA1B1B,BB1C1C,CC1A1A都是平行四邊形,則平面ABC與平面A1B1C1平行嗎?______(填“是”或“否”).
圖2-2-10
【解析】 因?yàn)閭?cè)面AA1B1B是平行四邊形,
所以AB∥A1B1,
因?yàn)锳B?平面A1B1C1,A1B1?平面A1B1C1,
所以AB∥平面A1B1C1,
同理可證:BC∥平面A1B1C1.
又因?yàn)锳B∩BC=B,AB?平面ABC,
BC?平面ABC,所以平面ABC∥平面A1B1C1.
【答案】 是
三、解答題
6、
8.如圖2-2-11所示的幾何體中,△ABC是任意三角形,AE∥CD,且AE=AB=2a,CD=a,F(xiàn)為BE的中點(diǎn),求證:DF∥平面ABC.
【導(dǎo)學(xué)號(hào):09960063】
圖2-2-11
【證明】 如圖所示,取AB的中點(diǎn)G,連接FG,CG,
∵F,G分別是BE,AB的中點(diǎn),
∴FG∥AE,F(xiàn)G=AE.
又∵AE=2a,CD=a,
∴CD=AE.又AE∥CD,
∴CD∥FG,CD=FG,
∴四邊形CDFG為平行四邊形,
∴DF∥CG.又CG?平面ABC,DF?平面ABC,
∴DF∥平面ABC.
9.如圖2-2-12所示,在三棱柱ABC-A1B1C1中,點(diǎn)D,
7、E分別是BC與B1C1的中點(diǎn).求證:平面A1EB∥平面ADC1.
圖2-2-12
【證明】 由棱柱性質(zhì)知,
B1C1∥BC,B1C1=BC,
又D,E分別為BC,B1C1的中點(diǎn),
所以C1EDB,則四邊形C1DBE為平行四邊形,
因此EB∥C1D,
又C1D?平面ADC1,
EB?平面ADC1,
所以EB∥平面ADC1.
連接DE,同理,EB1BD,
所以四邊形EDBB1為平行四邊形,則EDB1B.
因?yàn)锽1BA1A(棱柱的性質(zhì)),
所以EDA1A,則四邊形EDAA1為平行四邊形,
所以A1E∥AD,又A1E?平面ADC1,AD?平面ADC1,
所以A1E
8、∥平面ADC1.
由A1E∥平面ADC1,EB∥平面ADC1.
A1E?平面A1EB,EB?平面A1EB,
且A1E∩EB=E,所以平面A1EB∥平面ADC1.
[自我挑戰(zhàn)]
10.如圖2-2-13,正方體EFGH-E1F1G1H1中,下列四對(duì)截面中,彼此平行的一對(duì)截面是( )
圖2-2-13
A.平面E1FG1與平面EGH1
B.平面FHG1與平面F1H1G
C.平面F1H1H與平面FHE1
D.平面E1HG1與平面EH1G
【解析】 正方體中E1F∥H1G,E1G1∥EG,
從而可得E1F∥平面EGH1,E1G1∥平面EGH1,
所以平面E1FG1∥平面EG
9、H1.
【答案】 A
11.如圖2-2-14所示,在三棱柱ABC-A1B1C1中,若D是棱CC1的中點(diǎn),E是棱BB1的中點(diǎn),問(wèn)在棱AB上是否存在一點(diǎn)F,使平面DEF∥平面AB1C1?若存在,請(qǐng)確定點(diǎn)F的位置;若不存在,請(qǐng)說(shuō)明理由.
【導(dǎo)學(xué)號(hào):09960064】
圖2-2-14
【解】 存在點(diǎn)F,且F為AB的中點(diǎn).理由如下:
如圖,取AB的中點(diǎn)F,連接DF,EF,
因?yàn)樗倪呅蜝CC1B1是平行四邊形,
所以BB1∥CC1,且BB1=CC1,
因?yàn)镈,E分別是CC1和BB1的中點(diǎn),
所以C1D∥B1E且C1D=B1E,
所以四邊形B1C1DE是平行四邊形,
所以DE∥B1C1,
又DE?平面AB1C1,B1C1?平面AB1C1.
所以DE∥平面AB1C1.
因?yàn)镋,F(xiàn)分別是BB1,AB的中點(diǎn),
所以EF∥AB1.
又EF?平面AB1C1,AB1?平面AB1C1.
所以EF∥平面AB1C1.
又DE?平面DEF,EF?平面DEF,且DE∩EF=E,
所以平面DEF∥平面AB1C1.