《新編高考數(shù)學(xué)復(fù)習(xí) 選擇、填空組合(三)》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)復(fù)習(xí) 選擇、填空組合(三)(4頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
選擇、填空組合(三)
一、選擇題
1.函數(shù)y=的定義域?yàn)? )
A. B.∪(-1,+∞)
C. D.∪(-1,+∞)
2.已知復(fù)數(shù)-i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在二、四象限的角平分線上,則實(shí)數(shù)a的值為( )[來源:]
A.-2 B.-1 C.0 D.2
3.已知向量a=(1,1),b=(2,x),若a+b與4b-2a平行,則實(shí)數(shù)x的值為( )
A.-2 B.0 C.1 D.2
4.若點(diǎn)P(cos α,sin α)在直線y=-2x上,則sin 2α+2cos 2α=( )
A.- B.- C.-2 D.
5.將邊長(zhǎng)為
2、1的正方形ABCD沿對(duì)角線AC折疊,其正(主)視圖和俯視圖如圖所示.此時(shí)連接頂點(diǎn)B,D形成三棱錐B-ACD,則其側(cè)(左)視圖的面積為( )
A.1 B. C. D.
6.已知{an}是首項(xiàng)為1的等比數(shù)列,Sn是{an}的前n項(xiàng)和,且9S3=S6,則數(shù)列的前5項(xiàng)和為( )
A. B. C. D.
7.已知x∈[-1,1],y∈[0,2],則點(diǎn)P(x,y)落在區(qū)域內(nèi)的概率為( )
A. B. C. D.
8.下列說法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程=3-5x,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;
③線性回歸方程
3、x+必過();
④在一個(gè)2×2列聯(lián)表中,由計(jì)算得K2的觀測(cè)值k=13.079,則在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為這兩個(gè)變量間有關(guān)系.其中錯(cuò)誤的個(gè)數(shù)是( )
A.0 B.1 C.2 D.3
本題可以參考獨(dú)立性檢驗(yàn)臨界值表[來源:]
P(K2≥k)
0.5
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
9.函數(shù)y=的圖象大致是( )
10.某流程圖
4、如圖所示,現(xiàn)輸入如下四個(gè)函數(shù),則可以輸出的函數(shù)是( )
[來源:]
A.f(x)=x2 B.f(x)=
C.f(x)= D.f(x)=|sin x|
11.設(shè)圓錐曲線Γ的兩個(gè)焦點(diǎn)分別為F1,F2.若曲線Γ上存在點(diǎn)P滿足|PF1|∶|F1F2|∶|PF2|=4∶3∶2,則曲線Γ的離心率等于( )
A. B.或2 C.或2 D.
12.已知函數(shù)f(x)=+k的定義域?yàn)镈,且方程f(x)=x在D上有兩個(gè)不等實(shí)根,則k的取值范圍是( )
A.-1-1 D.k<1[來源:數(shù)理化網(wǎng)]
二、填空題
13.已知a>0,b>0,則+2的最小值為
5、.?
14.在△ABC中,a,b,c分別為角A,B,C所對(duì)應(yīng)的三角形的邊長(zhǎng),若4a+2b+3c=0,則cos B= .?
15.下列命題中,是真命題的為 .(寫出所有真命題的序號(hào))?
①命題“?x≥0,使x(x+3)≥0”的否定是“?x<0,使x(x+3)<0”;
②函數(shù)f(x)=lg(ax+1)的定義域是;
③函數(shù)f(x)=x2·ex在x=-2處取得極大值;
④若sin(α+β)=,sin(α-β)=,則=5.
16.已知定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),若方程f(x)=m(m>0)在區(qū)間[-8,8]上有4個(gè)不
6、同的根x1,x2,x3,x4,則x1+x2+x3+x4= .?
##
一、選擇題
1.A 解析:由題意知解得x∈.
2.A 解析:化簡(jiǎn)復(fù)數(shù)-i=-1-(a+1)i,
由題意知a+1=-1,解得a=-2.
3.D 解析:∵a+b=(3,1+x)與4b-2a=(6,4x-2)平行,
∴3(4x-2)-(1+x)6=0,解得x=2.
4.C 解析:∵點(diǎn)P在y=-2x上,
∴sin α=-2cos α,
∴sin 2α+2cos 2α=2sin αcos α+2(2cos2α-1)=-4cos2α+4cos2α-2=-2.
5.C 解析:由正(主)視圖和俯視圖可知,平面A
7、BC⊥平面ACD.三棱錐B-ACD側(cè)視圖為等腰直角三角形,直角邊長(zhǎng)為,∴側(cè)視圖面積為.
6.B 解析:∵9S3=S6,∴8(a1+a2+a3)=a4+a5+a6,∴8=q3,∴q=2,∴an=2n-1.∴,∴前5項(xiàng)和為.
7.B 解析:不等式組表示的區(qū)域如圖所示,陰影部分的面積為(1+1)=,則所求概率為.
8.B 解析:只有②錯(cuò)誤,應(yīng)該是y平均減少5個(gè)單位.
9.C 解析:由題意,函數(shù)為奇函數(shù),排除B;當(dāng)x>0時(shí),y=,y'=,所以當(dāng)00,函數(shù)為增函數(shù);當(dāng)x>e時(shí),y'<0,函數(shù)為減函數(shù).故選C.
10.C 解析:該流程圖的功能是篩選出既是奇函數(shù)又存在零點(diǎn)的函
8、數(shù).選項(xiàng)A,D不合題意;
對(duì)于選項(xiàng)B,因?yàn)閒(x)=不存在零點(diǎn),也不符合題意.
對(duì)于選項(xiàng)C,f(x)==1-,
當(dāng)x→-∞時(shí),f(x)→-1;
當(dāng)x→+∞時(shí),f(x)→1.
又因?yàn)樵摵瘮?shù)在x∈(-∞,+∞)上是連續(xù)的,
所以必存在零點(diǎn).
又函數(shù)f(-x)=-f(x),故C合題意.
11.A 解析:設(shè)|F1F2|=2c(c>0),由已知|PF1|∶|F1F2|∶|PF2|=4∶3∶2,得|PF1|=c,|PF2|=c,且|PF1|>|PF2|.
若圓錐曲線Γ為橢圓,則2a=|PF1|+|PF2|=4c,離心率e=;
若圓錐曲線Γ為雙曲線,則2a=|PF1|-|PF2|=c,離
9、心率e=,故選A.
12.A 解析:依題意=x-k在上有兩個(gè)不等實(shí)根.
問題可化為y=和y=x-k在上有兩個(gè)不同交點(diǎn).對(duì)于臨界直線m,應(yīng)有-k≥,即k≤-.對(duì)于臨界直線n,化簡(jiǎn)方程=x-k,得x2-(2k+2)x+k2-1=0,令Δ=0,解得k=-1,∴n∶y=x+1,令x=0,得y=1,∴-k<1,即k>-1.
綜上知,-1
10、析:①正確.特稱命題的否定為全稱命題.
②若a=0,定義域?yàn)镽.
③f'(x)=2xex+exx2=exx(2+x).當(dāng)x>-2時(shí),f'(x)<0;當(dāng)x<-2時(shí),f'(x)>0.故在x=-2處取得極大值.
④sin(α+β)=,則sin αcos β+cos αsin β=.①
sin(α-β)=,則sin αcos β-cos αsin β=.②[來源:]
由①②聯(lián)立解得=5.
16.-8 解析:函數(shù)在[0,2]上是增函數(shù),由函數(shù)f(x)為奇函數(shù),可得f(0)=0,函數(shù)圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,這樣就得到了函數(shù)在[-2,2]上的特征圖象.由f(x-4)=-f(x)?f(4-x)=f(x),故函數(shù)圖象關(guān)于直線x=2對(duì)稱,這樣就得到了函數(shù)在[2,6]上的特征圖象,根據(jù)f(x-4)=-f(x)?f(x-8)=-f(x-4)=f(x),函數(shù)以8為周期,即得到了函數(shù)在一個(gè)周期上的特征圖象,根據(jù)周期性得到函數(shù)在[-8,8]上的特征圖象(如圖所示),根據(jù)圖象不難看出方程f(x)=m(m>0)的4個(gè)根中,有兩根關(guān)于直線x=2對(duì)稱,另兩根關(guān)于直線x=-6對(duì)稱,故4個(gè)根的和為2×(-6)+2×2=-8.故填-8.