2019-2020年人教版高中數(shù)學(xué)必修四第一章 1-4-2 正弦函數(shù)、余弦函數(shù)的性質(zhì)(二) 《教案》.doc
《2019-2020年人教版高中數(shù)學(xué)必修四第一章 1-4-2 正弦函數(shù)、余弦函數(shù)的性質(zhì)(二) 《教案》.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年人教版高中數(shù)學(xué)必修四第一章 1-4-2 正弦函數(shù)、余弦函數(shù)的性質(zhì)(二) 《教案》.doc(2頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年人教版高中數(shù)學(xué)必修四第一章 1-4-2 正弦函數(shù)、余弦函數(shù)的性質(zhì)(二) 《教案》 教學(xué)目的: 知識目標(biāo):要求學(xué)生能理解三角函數(shù)的奇、偶性和單調(diào)性; 能力目標(biāo):掌握正、余弦函數(shù)的奇、偶性的判斷,并能求出正、余弦函數(shù)的單調(diào)區(qū)間。 德育目標(biāo):激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,陶冶學(xué)生的情操,培養(yǎng)學(xué)生堅(jiān)忍不拔的意志,實(shí)事求是的科學(xué)學(xué)習(xí)態(tài)度和勇于創(chuàng)新的精神。 教學(xué)重點(diǎn):正、余弦函數(shù)的奇、偶性和單調(diào)性; 教學(xué)難點(diǎn):正、余弦函數(shù)奇、偶性和單調(diào)性的理解與應(yīng)用 教學(xué)過程: 復(fù)習(xí)引入:偶函數(shù)、奇函數(shù)的定義,反映在圖象上,說明函數(shù)的圖象有怎樣的對稱性呢? 二、講解新課: 奇偶性 請同學(xué)們觀察正、余弦函數(shù)的圖形,說出函數(shù)圖象有怎樣的對稱性?其特點(diǎn)是什么? (1)余弦函數(shù)的圖形 當(dāng)自變量取一對相反數(shù)時(shí),函數(shù)y取同一值。 例如:f(-)=,f()= ,即f(-)=f();…… 由于cos(-x)=cosx ∴f(-x)= f(x). 以上情況反映在圖象上就是:如果點(diǎn)(x,y)是函數(shù)y=cosx的圖象上的任一點(diǎn),那么,與它關(guān)于y軸的對稱點(diǎn)(-x,y)也在函數(shù)y=cosx的圖象上,這時(shí),我們說函數(shù)y=cosx是偶函數(shù)。 (2)正弦函數(shù)的圖形 觀察函數(shù)y=sinx的圖象,當(dāng)自變量取一對相反數(shù)時(shí),它們對應(yīng)的函數(shù)值有什么關(guān)系? 這個(gè)事實(shí)反映在圖象上,說明函數(shù)的圖象有怎樣的對稱性呢?函數(shù)的圖象關(guān)于原點(diǎn)對稱。 也就是說,如果點(diǎn)(x,y)是函數(shù)y=sinx的圖象上任一點(diǎn),那么與它關(guān)于原點(diǎn)對稱的點(diǎn)(-x,-y)也在函數(shù)y=sinx的圖象上,這時(shí),我們說函數(shù)y=sinx是奇函數(shù)。 2.單調(diào)性 從y=sinx,x∈[-]的圖象上可看出: 當(dāng)x∈[-,]時(shí),曲線逐漸上升,sinx的值由-1增大到1. 當(dāng)x∈[,]時(shí),曲線逐漸下降,sinx的值由1減小到-1. 結(jié)合上述周期性可知: 正弦函數(shù)在每一個(gè)閉區(qū)間[-+2kπ,+2kπ](k∈Z)上都是增函數(shù),其值從-1增大到1;在每一個(gè)閉區(qū)間[+2kπ,+2kπ](k∈Z)上都是減函數(shù),其值從1減小到-1. 余弦函數(shù)在每一個(gè)閉區(qū)間[(2k-1)π,2kπ](k∈Z)上都是增函數(shù),其值從-1增加到1; 在每一個(gè)閉區(qū)間[2kπ,(2k+1)π](k∈Z)上都是減函數(shù),其值從1減小到-1. 3.有關(guān)對稱軸 觀察正、余弦函數(shù)的圖形,可知 y=sinx的對稱軸為x= k∈Z y=cosx的對稱軸為x= k∈Z 練習(xí)1。(1)寫出函數(shù)的對稱軸; (2)的一條對稱軸是( C ) (A) x軸, (B) y軸, (C) 直線, (D) 直線 思考:P46面11題。 4.例題講解 例1 判斷下列函數(shù)的奇偶性 (1) (2) 例2 函數(shù)f(x)=sinx圖象的對稱軸是 ;對稱中心是 . 例3.P38面例3 例4 不通過求值,指出下列各式大于0還是小于0; ① ② 例5 求函數(shù) 的單調(diào)遞增區(qū)間; 思考:你能求的單調(diào)遞增區(qū)間嗎? 練習(xí)2:P40面的練習(xí) 三、小 結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:正弦、余弦函數(shù)的性質(zhì) 1. 單調(diào)性 2. 奇偶性 3. 周期性 五、課后作業(yè):《習(xí)案》作業(yè)十。- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 教案 2019-2020年人教版高中數(shù)學(xué)必修四第一章 1-4-2 正弦函數(shù)、余弦函數(shù)的性質(zhì)二 教案 2019 2020 年人教版 高中數(shù)學(xué) 必修 第一章 正弦 函數(shù) 余弦 性質(zhì)
鏈接地址:http://m.italysoccerbets.com/p-6180583.html