2019-2020年人教A版高中數(shù)學(xué)必修三 1-1-1 算法的概念 教案.doc
《2019-2020年人教A版高中數(shù)學(xué)必修三 1-1-1 算法的概念 教案.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年人教A版高中數(shù)學(xué)必修三 1-1-1 算法的概念 教案.doc(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年人教A版高中數(shù)學(xué)必修三 1-1-1 算法的概念 教案 一、教學(xué)目標(biāo): 1、知識(shí)與技能:(1)了解算法的含義,體會(huì)算法的思想。 (2)能夠用自然語(yǔ)言敘述算法。 (3)掌握正確的算法應(yīng)滿足的要求。 (4)會(huì)寫出解線性方程(組)的算法。 (5)會(huì)寫出一個(gè)求有限整數(shù)序列中的最大值的算法。 (6)會(huì)應(yīng)用Scilab求解方程組。 2、過(guò)程與方法:通過(guò)求解二元一次方程組,體會(huì)解方程的一般性步驟,從而得到一個(gè)解二元一次方程組的步驟,這些步驟就是算法,不同的問題有不同的算法。由于思考問題的角度不同,同一個(gè)問題也可能有多個(gè)算法,能模仿求解二元一次方程組的步驟,寫出一個(gè)求有限整數(shù)序列中的最大值的算法。 3、情感態(tài)度與價(jià)值觀:通過(guò)本節(jié)的學(xué)習(xí),使我們對(duì)計(jì)算機(jī)的算法語(yǔ)言有一個(gè)基本的了解,明確算法的要求,認(rèn)識(shí)到計(jì)算機(jī)是人類征服自然的一各有力工具,進(jìn)一步提高探索、認(rèn)識(shí)世界的能力。 二、重點(diǎn)與難點(diǎn): 重點(diǎn):算法的含義、解二元一次方程組和判斷一個(gè)數(shù)為質(zhì)數(shù)的算法設(shè)計(jì)。 難點(diǎn):把自然語(yǔ)言轉(zhuǎn)化為算法語(yǔ)言。 三、學(xué)法與教學(xué)用具: 學(xué)法:1、寫出的算法,必須能解決一類問題(如:判斷一個(gè)整數(shù)n(n>1)是否為質(zhì)數(shù);求任意一個(gè)方程的近似解;……),并且能夠重復(fù)使用。 2、要使算法盡量簡(jiǎn)單、步驟盡量少。 3、要保證算法正確,且計(jì)算機(jī)能夠執(zhí)行,如:讓計(jì)算機(jī)計(jì)算12345是可以做到的,但讓計(jì)算機(jī)去執(zhí)行“倒一杯水”“替我理發(fā)”等則是做不到的。 教學(xué)用具:電腦,計(jì)算器,圖形計(jì)算器 四、教學(xué)設(shè)想: 1,創(chuàng)設(shè)情境: 算法作為一個(gè)名詞,在中學(xué)教科書中并沒有出現(xiàn)過(guò),我們?cè)诨A(chǔ)教育階段還沒有接觸算法概念。但是我們卻從小學(xué)就開始接觸算法,熟悉許多問題的算法。如,做四則運(yùn)算要先乘除后加減,從里往外脫括弧,豎式筆算等都是算法,至于乘法口訣、珠算口訣更是算法的具體體現(xiàn)。我們知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解線性方程組的算法,求兩個(gè)數(shù)的最大公因數(shù)的算法等。因此,算法其實(shí)是重要的數(shù)學(xué)對(duì)象。 2. 探索研究 算法(algorithm)一詞源于算術(shù)(algorism),即算術(shù)方法,是指一個(gè)由已知推求未知的運(yùn)算過(guò)程。后來(lái),人們把它推廣到一般,把進(jìn)行某一工作的方法和步驟稱為算法。 廣義地說(shuō),算法就是做某一件事的步驟或程序。菜譜是做菜肴的算法,洗衣機(jī)的使用說(shuō)明書是操作洗衣機(jī)的算法,歌譜是一首歌曲的算法。在數(shù)學(xué)中,主要研究計(jì)算機(jī)能實(shí)現(xiàn)的算法,即按照某種機(jī)械程序步驟一定可以得到結(jié)果的解決問題的程序。比如解方程的算法、函數(shù)求值的算法、作圖的算法,等等。 1、 例題分析: 例1: 用二分法設(shè)計(jì)一個(gè)求議程x2–2=0的近似根的算法。 算法分析:回顧二分法解方程的過(guò)程,并假設(shè)所求近似根與準(zhǔn)確解的差的絕對(duì)值不超過(guò)0.005,則不難設(shè)計(jì)出以下步驟: 第一步:令f(x)=x2–2。因?yàn)閒(1)<0,f(2)>0,所以設(shè)x1=1,x2=2。 第二步:令m=(x1+x2)/2,判斷f(m)是否為0,若則,則m為所長(zhǎng);若否,則繼續(xù)判斷f(x1)f(m)大于0還是小于0。 第三步:若f(x1)f(m)>0,則令x1=m;否則,令x2=m。 第四步:判斷|x1–x2|<0.005是否成立?若是,則x1、x2之間的任意取值均為滿足條件的近似根;若否,則返回第二步。 小結(jié):算法具有以下特性:(1)有窮性;(2)確定性;(3)順序性;(4)不惟一性;(5)普遍性 典例剖析: 1、基本概念題 x-2y=-1,① 例2 寫出解二元一次方程組 的算法 2x+y=1② 解:第一步,②-①2得5y=3;③ 第二步,解③得y=3/5; 第三步,將y=3/5代入①,得x=1/5 學(xué)生做一做:對(duì)于一般的二元一次方程組來(lái)說(shuō),上述步驟應(yīng)該怎樣進(jìn)一步完善? 老師評(píng)一評(píng):本題的算法是由加減消元法求解的,這個(gè)算法也適合一般的二元一次方程組的解法。下面寫出求方程組的解的算法: 第一步:②A1-①A2,得(A1B2-A2B1)y+A1C2-A2C1=0;③ 第二步:解③,得; 第三步:將代入①,得。 此時(shí)我們得到了二元一次方程組的求解公式,利用此公司可得到倒2的另一個(gè)算法: 第一步:取A1=1,B1=-2,C1=1,A2=2,B2=1,C2=-1; 第二步:計(jì)算與 第三步:輸出運(yùn)算結(jié)果。 可見利用上述算法,更加有利于上機(jī)執(zhí)行與操作。 基礎(chǔ)知識(shí)應(yīng)用題 例3 寫出一個(gè)求有限整數(shù)列中的最大值的算法。 解:算法如下。 S1 先假定序列中的第一個(gè)整數(shù)為“最大值”。 S2 將序列中的下一個(gè)整數(shù)值與“最大值”比較,如果它大于此“最大值”,這時(shí)你就假定“最大值”是這個(gè)整數(shù)。 S3 如果序列中還有其他整數(shù),重復(fù)S2。 S4 在序列中一直到?jīng)]有可比的數(shù)為止,這時(shí)假定的“最大值”就是這個(gè)序列中的最大值。 練習(xí): 學(xué)生做一做 寫出對(duì)任意3個(gè)整數(shù)a,b,c求出最大值的算法。 老師評(píng)一評(píng) 在例2中我們是用自然語(yǔ)言來(lái)描述算法的,下面我們用數(shù)學(xué)語(yǔ)言來(lái)描述本題的算法。 S1 max=a S2 如果b>max, 則max=b. S3 如果C>max, 則max=c. S4 max就是a,b,c中的最大值。 綜合應(yīng)用題 例5 寫出求1+2+3+4+5+6的一個(gè)算法。 分析:可以按逐一相加的程序進(jìn)行,也可以利用公式1+2+…+n=進(jìn)行,也可以根據(jù)加法運(yùn)算律簡(jiǎn)化運(yùn)算過(guò)程。 解:算法1: S1:計(jì)算1+2得到3; S2:將第一步中的運(yùn)算結(jié)果3與3相加得到6; S3:將第二步中的運(yùn)算結(jié)果6與4相加得到10; S4:將第三步中的運(yùn)算結(jié)果10與5相加得到15; S5:將第四步中的運(yùn)算結(jié)果15與6相加得到21。 算法2: S1:取n=6; S2:計(jì)算; S3:輸出運(yùn)算結(jié)果。 算法3: S1:將原式變形為(1+6)+(2+5)+(3+4)=37; S2:計(jì)算37; S3:輸出運(yùn)算結(jié)果。 本題小結(jié):算法1是最原始的方法,最為繁瑣,步驟較多,當(dāng)加數(shù)較大時(shí),比如1+2+3+…+10000,再用這種方法是行不通的;算法2與算法3都是比較簡(jiǎn)單的算法,但比較而言,算法2最為簡(jiǎn)單,且易于在計(jì)算機(jī)上執(zhí)行操作。 4、課堂小結(jié) 本節(jié)課主要講了算法的概念,算法就是解決問題的步驟,平時(shí)列論我們做什么事都離不開算法,算法的描述可以用自然語(yǔ)言,也可以用數(shù)學(xué)語(yǔ)言。 例如,某同學(xué)要在下午到體育館參加比賽,比賽下午2時(shí)開始,請(qǐng)寫出該同學(xué)從家里發(fā)到比賽地的算法。 若用自然語(yǔ)言來(lái)描述可寫為 (1)1:00從家出發(fā)到公共汽車站 (2)1:10上公共汽車 (3)1:40到達(dá)體育館 (4)1:45做準(zhǔn)備活動(dòng)。 (5)2:00比賽開始。 若用數(shù)學(xué)語(yǔ)言來(lái)描述可寫為: S1 1:00從家出發(fā)到公共汽車站 S2 1:10上公共汽車 S3 1:40到達(dá)體育館 S4 1:45做準(zhǔn)備活動(dòng) S5 2:00比賽開始 大家從中要以看出,實(shí)際上兩種寫法無(wú)本質(zhì)區(qū)別,但我們?cè)跁鴮憰r(shí)應(yīng)盡量用教學(xué)語(yǔ)言來(lái)描述,它的優(yōu)越性在以后的學(xué)習(xí)中我們會(huì)體會(huì)到。 5,作業(yè): 必做題: 1、寫出解一元二次方程ax2+bx+c=0(a≠0)的一個(gè)算法。 2、寫出求1至1000的正數(shù)中的3倍數(shù)的一個(gè)算法(打印結(jié)果) 3,寫出解不等式x2-2x-3<0的一個(gè)算法。 選做題: 4、求過(guò)P(a1,b1)、Q(a2,b2)兩點(diǎn)的直線斜率有如下的算法: 5、寫出求過(guò)兩點(diǎn)M(-2,-1)、N(2,3)的直線與坐標(biāo)軸圍成面積的一個(gè)算法。 答案1、解:算法如下 S1 計(jì)算△=b2-4ac S2 如果△〈0,則方程無(wú)解;否則x1= S3 輸出計(jì)算結(jié)果x1,x2或無(wú)解信息。 2、解:算法如下: S1 使i=1 S2 i被3除,得余數(shù)r S3 如果r=0,則打印i,否則不打印 S4 使i=i+1 S5 若i≤1000,則返回到S2繼續(xù)執(zhí)行,否則算法結(jié)束。 3.解:算法如下: 第一步:x2-2x-3=0的兩根是x1=3,x2=-1。 第二步:由x2-2x-3<0可知不等式的解集為{x | -1- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年人教A版高中數(shù)學(xué)必修三 1-1-1 算法的概念 教案 2019 2020 年人教 高中數(shù)學(xué) 必修 算法 概念
鏈接地址:http://m.italysoccerbets.com/p-6236751.html