新編高考理科導(dǎo)學案【第四章】三角函數(shù)、解三角形 學案20

上傳人:仙*** 文檔編號:62412703 上傳時間:2022-03-14 格式:DOC 頁數(shù):11 大?。?75.50KB
收藏 版權(quán)申訴 舉報 下載
新編高考理科導(dǎo)學案【第四章】三角函數(shù)、解三角形 學案20_第1頁
第1頁 / 共11頁
新編高考理科導(dǎo)學案【第四章】三角函數(shù)、解三角形 學案20_第2頁
第2頁 / 共11頁
新編高考理科導(dǎo)學案【第四章】三角函數(shù)、解三角形 學案20_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新編高考理科導(dǎo)學案【第四章】三角函數(shù)、解三角形 學案20》由會員分享,可在線閱讀,更多相關(guān)《新編高考理科導(dǎo)學案【第四章】三角函數(shù)、解三角形 學案20(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、新編高考數(shù)學復(fù)習資料 學案20 函數(shù)y=Asin(ωx+φ)的圖象及 三角函數(shù)模型的簡單應(yīng)用 導(dǎo)學目標: 1.了解函數(shù)y=Asin(ωx+φ)的物理意義;能畫出y=Asin(ωx+φ)的圖象,了解參數(shù)A,ω,φ對函數(shù)圖象變化的影響.2.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,會用三角函數(shù)解決一些簡單實際問題. 自主梳理 1.用五點法畫y=Asin(ωx+φ)一個周期內(nèi)的簡圖 用五點法畫y=Asin(ωx+φ)一個周期內(nèi)的簡圖時,要找五個特征點.如下表所示. X Ωx+φ y= Asin(ωx+φ) 0 A 0 -

2、A 0 2.圖象變換:函數(shù)y=Asin(ωx+φ) (A>0,ω>0)的圖象可由函數(shù)y=sin x的圖象作如下變換得到: (1)相位變換:y=sin xy=sin(x+φ),把y=sin x圖象上所有的點向____(φ>0)或向____(φ<0)平行移動__________個單位. (2)周期變換:y=sin (x+φ)→y=sin(ωx+φ),把y=sin(x+φ)圖象上各點的橫坐標____(0<ω<1)或____(ω>1)到原來的________倍(縱坐標不變). (3)振幅變換:y=sin (ωx+φ)→y=Asin(ωx+φ),把y=sin(ωx+φ)圖象上各點的縱坐標_

3、_____(A>1)或______(00,ω>0),x∈(-∞,+∞)表示一個振動量時,則____叫做振幅,T=________叫做周期,f=______叫做頻率,________叫做相位,____叫做初相. 函數(shù)y=Acos(ωx+φ)的最小正周期為____________.y=Atan(ωx+φ)的最小正周期為________. 自我檢測 1.(2011·池州月考)要得到函數(shù)y=sin的圖象,可以把函數(shù)y=sin 2x的圖象(  ) A.向左平移個單位 B.向右平移個單位 C.向左平移個

4、單位 D.向右平移個單位 2.已知函數(shù)f(x)=sin (x∈R,ω>0)的最小正周期為π.將y=f(x)的圖象向左平移|φ|個單位長度,所得圖象關(guān)于y軸對稱,則φ的一個值是 (  ) A. B. C. D. 3.已知函數(shù)f(x)=sin(ωx+)(x∈R,ω>0)的最小正周期為π,為了得到函數(shù)g(x)=cos ωx的圖象,只要將y=f(x)的圖象 (  ) A.向左平移個單位長度 B.向右平移個單位長度 C.向左平移

5、個單位長度 D.向右平移個單位長度 4.(2011·太原高三調(diào)研)函數(shù)y=sin的一條對稱軸方程是 (  ) A.x= B.x= C.x= D.x= 5.(2011·六安月考)若動直線x=a與函數(shù)f(x)=sin x和g(x)=cos x的圖象分別交于M、N兩點,則|MN|的最大值為 (  ) A.1 B. C. D.2 探究點一 三角函數(shù)的圖象及變換 例1 已知函數(shù)y=2sin. (1)

6、求它的振幅、周期、初相;(2)用“五點法”作出它在一個周期內(nèi)的圖象;(3)說明y=2sin的圖象可由y=sin x的圖象經(jīng)過怎樣的變換而得到. 變式遷移1 設(shè)f(x)=cos2x+sin xcos x+sin2x (x∈R). (1)畫出f(x)在上的圖象; (2)求函數(shù)的單調(diào)增減區(qū)間; (3)如何由y=sin x的圖象變換得到f(x)的圖象? 探究點二 求y=Asin(ωx+φ)的解析式 例2 已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,|φ|<,x∈R)的圖象的一部分如圖所示.求函數(shù)f(x)的解析式. 變式

7、遷移2 (2011·寧波模擬)已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,|φ|<)的圖象與y軸的交點為(0,1),它在y軸右側(cè)的第一個最高點和第一個最低點的坐標分別為(x0,2)和(x0+2π,-2). (1)求f(x)的解析式及x0的值; (2)若銳角θ滿足cos θ=,求f(4θ)的值. 探究點三 三角函數(shù)模型的簡單應(yīng)用 例3 已知海灣內(nèi)海浪的高度y(米)是時間t(0≤t≤24,單位:小時)的函數(shù),記作y=f(t).下表是某日各時刻記錄的浪高數(shù)據(jù): t 0 3 6 9 12 15 18 21 24 y 1.5 1.0

8、0.5 1.0 1.5 1.0 0.5 0.99 1.5 經(jīng)長期觀測,y=f(t)的曲線可近似地看成是函數(shù)y=Acos ωt+b.(1)根據(jù)以上數(shù)據(jù),求函數(shù)y=Acos ωt+b的最小正周期T,振幅A及函數(shù)表達式;(2)依據(jù)規(guī)定,當海浪高度高于1米時才對沖浪愛好者開放,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8∶00至晚上20∶00之間,有多少時間可供沖浪者進行運動? 變式遷移3 交流電的電壓E(單位:伏)與時間t(單位:秒)的關(guān)系可用E=220sin表示,求: (1)開始時的電壓;(2)最大電壓值重復(fù)出現(xiàn)一次的時間間隔;(3)電壓的最大值和第一次取得最大值時的時

9、間. 數(shù)形結(jié)合思想的應(yīng)用 例 (12分)設(shè)關(guān)于θ的方程cos θ+sin θ+a=0在區(qū)間(0,2π)內(nèi)有相異的兩個實根α、β. (1)求實數(shù)a的取值范圍; (2)求α+β的值. 【答題模板】 解 (1)原方程可化為sin(θ+)=-, 作出函數(shù)y=sin(x+)(x∈(0,2π))的圖象. [3分] 由圖知,方程在(0,2π)內(nèi)有相異實根α,β的充要條件是. 即-2

10、分] 當-2

11、用三角函數(shù)有界性求a的范圍,不僅過程繁瑣,而且很容易漏掉a≠-的限制,而從圖象中可以清楚地看出當a=-時,方程只有一解. 1.從“整體換元”的思想認識、理解、運用“五點法作圖”,尤其在求y=Asin(ωx+φ)的單調(diào)區(qū)間、解析式等相關(guān)問題中要充分理解基本函數(shù)y=sin x的作用. 2.三角函數(shù)自身綜合問題:要以課本為主,充分掌握公式之間的內(nèi)在聯(lián)系,從函數(shù)名稱、角度、式子結(jié)構(gòu)等方面觀察,尋找聯(lián)系,結(jié)合單位圓或函數(shù)圖象等分析解決問題. 3.三角函數(shù)模型應(yīng)用的解題步驟: (1)根據(jù)圖象建立解析式或根據(jù)解析式作出圖象. (2)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型. (3)利用收

12、集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型. (滿分:75分) 一、選擇題(每小題5分,共25分) 1.將函數(shù)y=sin的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得的圖象向左平移個單位,得到的圖象對應(yīng)的解析式是 (  ) A.y=sin x B.y=sin C.y=sin D.y=sin 2.(2011·銀川調(diào)研)如圖所示的是某函數(shù)圖象的一部分,則此函數(shù)是 (  ) A.y=sin B.y=sin C.y=cos D.y=cos 3.

13、為得到函數(shù)y=cos的圖象,只需將函數(shù)y=sin 2x的圖象 (  ) A.向左平移個單位長度 B.向右平移個單位長度 C.向左平移個單位長度 D.向右平移個單位長度 4.(2009·遼寧)已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0)的圖象如圖所示,f()=-,則f(0)等于 (  ) A.- B.- C. D. 5.(2011·煙臺月考)若函數(shù)y=Asin(ωx+φ)

14、+m(A>0,ω>0)的最大值為4,最小值為0,最小正周期為,直線x=是其圖象的一條對稱軸,則它的解析式是 (  ) A.y=4sin B.y=2sin+2 C.y=2sin+2 D.y=2sin+2 題號 1 2 3 4 5 答案 二、填空題(每小題4分,共12分) 6.已知函數(shù)y=sin(ωx+φ) (ω>0,-π≤φ<π)的圖象如圖所示,則φ=________. 7.(2010·濰坊五校聯(lián)考)函數(shù)f(x)=cos 2x的圖象向左平移個單位長度后得到g(x)的圖象,則g(x)=______.

15、 8.(2010·福建)已知函數(shù)f(x)=3sin (ω>0)和g(x)=2cos(2x+φ)+1的圖象的對稱軸完全相同.若x∈,則f(x)的取值范圍是____________. 三、解答題(共38分) 9.(12分)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<,x∈R)的圖象的一部分如下圖所示. (1)求函數(shù)f(x)的解析式; (2)當x∈[-6,-]時,求函數(shù)y=f(x)+f(x+2)的最大值與最小值及相應(yīng)的x的值. 10.(12分)已知函數(shù)f(x)=Asin(ωx+φ) (A>0,0<ω≤2且0≤φ≤π)是R上的偶函數(shù),其圖象過點M(0,

16、2).又f(x)的圖象關(guān)于點N對稱且在區(qū)間[0,π]上是減函數(shù),求f(x)的解析式. 11.(14分)(2010·山東)已知函數(shù)f(x)=sin(π-ωx)·cos ωx+cos2ωx (ω>0)的最小正周期為π, (1)求ω的值; (2)將函數(shù)y=f(x)的圖象上各點的橫坐標縮短到原來的,縱坐標不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間上的最小值. 答案 自主梳理 1.     0  π  2π 2.(1)左 右 |φ| (2)伸長 縮短  (3)伸長 縮短 A 3.A   ωx+φ φ   自我檢測 1.B 2.D 3.A 

17、4.D 5.B 課堂活動區(qū) 例1 解題導(dǎo)引 (1)作三角函數(shù)圖象的基本方法就是五點法,此法注意在作出一個周期上的簡圖后,應(yīng)向兩邊伸展一下,以示整個定義域上的圖象; (2)變換法作圖象的關(guān)鍵是看x軸上是先平移后伸縮還是先伸縮后平移,對于后者可利用ωx+φ=ω來確定平移單位. 解 (1)y=2sin的振幅A=2,周期T==π,初相φ=. (2)令X=2x+,則y=2sin=2sin X. 列表: X - X 0 π 2π y=sin X 0 1 0 -1 0 y=2sin 0 2 0 -2 0 描點連線,得圖象如圖所示:

18、 (3)將y=sin x的圖象上每一點的橫坐標x縮短為原來的倍(縱坐標不變),得到y(tǒng)=sin 2x的圖象;再將y=sin 2x的圖象向左平移個單位,得到y(tǒng)=sin 2=sin的圖象;再將y=sin的圖象上每一點的橫坐標保持不變,縱坐標伸長為原來的2倍,得到y(tǒng)=2sin的圖象. 變式遷移1 解 y=·+sin 2x+· =1+sin 2x-cos 2x=1+sin. (1)(五點法)設(shè)X=2x-, 則x=X+,令X=0,,π,,2π, 于是五點分別為,,,,,描點連線即可得圖象,如下圖. (2)由-+2kπ≤2x-≤+2kπ,k∈Z, 得單調(diào)增區(qū)間為,k∈Z. 由+2kπ≤

19、2x-≤+2kπ,k∈Z, 得單調(diào)減區(qū)間為,k∈Z. (3)把y=sin x的圖象向右平移個單位;再把橫坐標縮短到原來的倍(縱坐標不變);最后把所得圖象向上平移1個單位即得y=sin+1的圖象. 例2 解題導(dǎo)引 確定y=Asin(ωx+φ)+b的解析式的步驟: (1)求A,b.確定函數(shù)的最大值M和最小值m,則A=,b=.(2)求ω.確定函數(shù)的周期T,則ω=.(3)求參數(shù)φ是本題的關(guān)鍵,由特殊點求φ時,一定要分清特殊點是“五點法”的第幾個點. 解 由圖象可知A=2,T=8. ∴ω===. 方法一 由圖象過點(1,2), 得2sin=2, ∴sin=1.∵|φ|<,∴φ=, ∴

20、f(x)=2sin. 方法二 ∵點(1,2)對應(yīng)“五點”中的第二個點. ∴×1+φ=,∴φ=, ∴f(x)=2sin. 變式遷移2 解 (1)由題意可得: A=2,=2π,即=4π,∴ω=, f(x)=2sin,f(0)=2sin φ=1, 由|φ|<,∴φ=.∴f(x)=2sin(x+). f(x0)=2sin=2, 所以x0+=2kπ+,x0=4kπ+ (k∈Z), 又∵x0是最小的正數(shù),∴x0=. (2)f(4θ)=2sin =sin 2θ+cos 2θ, ∵θ∈,cos θ=,∴sin θ=, ∴cos 2θ=2cos2θ-1=-, sin 2θ=2si

21、n θcos θ=, ∴f(4θ)=×-=. 例3 解題導(dǎo)引 (1)三角函數(shù)模型在實際中的應(yīng)用體現(xiàn)在兩個方面,一是已知函數(shù)模型,如本例,關(guān)鍵是準確理解自變量的意義及自變量與函數(shù)之間的對應(yīng)法則,二是把實際問題抽象轉(zhuǎn)化成數(shù)學問題,建立三角函數(shù)模型,再利用三角函數(shù)的有關(guān)知識解決問題,其關(guān)鍵是建模.(2)如何從表格中得到A、ω、b的值是解題的關(guān)鍵也是易錯點,同時第二問中解三角不等式也是易錯點.(3)對于三角函數(shù)模型y=Asin(ωx+φ)+k (A>0,ω>0)中參數(shù)的確定有如下結(jié)論:①A=;②k=;③ω=;④φ由特殊點確定. 解 (1)由表中數(shù)據(jù),知周期T=12, ∴ω===, 由t=0,

22、y=1.5,得A+b=1.5; 由t=3,y=1.0,得b=1.0, ∴A=0.5,b=1,∴y=cos t+1. (2)由題知,當y>1時才可對沖浪者開放, ∴cos t+1>1,∴cos t>0, ∴2kπ-

23、(秒). (3)當100πt+=,t=秒時,第一次取得最大值,電壓的最大值為220伏. 課后練習區(qū) 1.C 2.D 3.A 4.C 5.D 6. 7.-sin 2x 8. 9.解 (1)由圖象知A=2, ∵T==8,∴ω=.……………………………………………………………………(2分) 又圖象經(jīng)過點(-1,0),∴2sin(-+φ)=0. ∵|φ|<,∴φ=. ∴f(x)=2sin(x+).………………………………………………………………………(5分) (2)y=f(x)+f(x+2) =2sin(x+)+2sin(x++) =2sin(x+)=2cosx.……………

24、………………………………………………(8分) ∵x∈[-6,-],∴-≤x≤-. ∴當x=-,即x=-時,y=f(x)+f(x+2)取得最大值; 當x=-π,即x=-4時,y=f(x)+f(x+2)取得最小值-2.………………………(12分) 10.解 根據(jù)f(x)是R上的偶函數(shù),圖象過點M(0,2),可得f(-x)=f(x)且A=2, 則有2sin(-ωx+φ)=2sin(ωx+φ), 即sin ωxcos φ=0, ∴cos φ=0,即φ=kπ+ (k∈Z). 而0≤φ≤π,∴φ=.………………………………………………………………………(4分) 再由f(x)=2sin(-

25、ωx+)=2cos ωx的圖象關(guān)于點N對稱,f()=2cos(π)=0 ∴cos π=0,……………………………………………………………………………(8分) 即π=kπ+ (k∈Z),ω= (k∈Z). 又0<ω≤2,∴ω=或ω=2.……………………………………………………………(10分) 最后根據(jù)f(x)在區(qū)間[0,π]上是減函數(shù), 可知只有ω=滿足條件. 所以f(x)=2cos x.………………………………………………………………………(12分) 11.解 (1)f(x)=sin(π-ωx)cos ωx+cos2ωx =sin ωxcos ωx+ =sin 2ωx+cos 2ωx+ =sin+.……………………………………………………………………(6分) 由于ω>0,依題意得=π,所以ω=1.………………………………………………(8分) (2)由(1)知f(x)=sin+, 所以g(x)=f(2x) =sin+.……………………………………………………………………(10分) 當0≤x≤時,≤4x+≤. 所以≤sin≤1. 因此1≤g(x)≤,…………………………………………………………………(13分) 所以g(x)在此區(qū)間內(nèi)的最小值為1.…………………………………………………(14分)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!