《新版一輪北師大版理數(shù)學(xué)教案:第8章 第6節(jié) 拋物線 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《新版一輪北師大版理數(shù)學(xué)教案:第8章 第6節(jié) 拋物線 Word版含解析(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
1
2、 1
第六節(jié) 拋物線
[考綱傳真] 1.了解拋物線的實際背景,了解拋物線在刻畫現(xiàn)實世界和解決實際問題中的作用.2.掌握拋物線的定義、幾何圖形、標(biāo)準(zhǔn)方程及簡單幾何性質(zhì).3.了解拋物線的簡單應(yīng)用.4.理解數(shù)形結(jié)合的思想.
1.拋物線的概念
平面內(nèi)與一個定點F和一條定直線l(l不過F)的距離相等的點的集合叫作拋物線.點F叫作拋物線的焦點,直線l叫作拋物線的準(zhǔn)線.
2.拋物
3、線的標(biāo)準(zhǔn)方程與幾何性質(zhì)
標(biāo)準(zhǔn)方程
y2=2px (p>0)
y2=-2px
(p>0)
x2=2py (p>0)
x2=-2py
(p>0)
p的幾何意義:焦點F到準(zhǔn)線l的距離
圖像
頂點
O(0,0)
對稱軸
y=0
x=0
焦點
F
F
F
F
離心率
e=1
準(zhǔn)線方程
x=-
x=
y=-
y=
范圍
x≥0,y∈R
x≤0,y∈R
y≥0,x∈R
y≤0,x∈R
焦半徑|PF|
x0+
-x0+
y0+
-y0+
1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“×”)
(1)
4、平面內(nèi)與一個定點F和一條定直線l的距離相等的點的軌跡一定是拋物線.( )
(2)方程y=ax2(a≠0)表示的曲線是焦點在x軸上的拋物線,且其焦點坐標(biāo)是,準(zhǔn)線方程是x=-.( )
(3)拋物線既是中心對稱圖形,又是軸對稱圖形.( )
(4)AB為拋物線y2=2px(p>0)的過焦點F的弦,若A(x1,y1),B(x2,y2),則x1x2=,y1y2=-p2,弦長|AB|=x1+x2+p.( )
[答案] (1)× (2)× (3)× (4)√
2.(教材改編)若拋物線y=4x2上的一點M到焦點的距離為1,則點M的縱坐標(biāo)是( )
A. B.
C. D.0
B [M到準(zhǔn)線
5、的距離等于M到焦點的距離,又準(zhǔn)線方程為y=-,
設(shè)M(x,y),則y+=1,∴y=.]
3.拋物線y=x2的準(zhǔn)線方程是( )
A.y=-1 B.y=-2
C.x=-1 D.x=-2
A [∵y=x2,∴x2=4y,∴準(zhǔn)線方程為y=-1.]
4.(20xx·西安質(zhì)檢)若拋物線y2=2px(p>0)的準(zhǔn)線經(jīng)過雙曲線x2-y2=1的一個焦點,則p=__________.
2 [拋物線的準(zhǔn)線方程為x=-,p>0,雙曲線的焦點為F1(-,0),F(xiàn)2(,0),所以-=-,p=2.]
5.(20xx·浙江高考)若拋物線y2=4x上的點M到焦點的距離為10,則M到y(tǒng)軸的距離是____
6、____.
9 [設(shè)點M的橫坐標(biāo)為x0,則點M到準(zhǔn)線x=-1的距離為x0+1,由拋物線的定義知x0+1=10,∴x0=9,
∴點M到y(tǒng)軸的距離為9.]
拋物線的定義及應(yīng)用
(1)(20xx·全國卷Ⅰ)已知拋物線C:y2=x的焦點為F,點A(x0,y0)是C上一點,|AF|=x0,則x0=( )
A.1 B.2
C.4 D.8
(2)(20xx·廣東汕頭調(diào)研)已知P是拋物線y2=4x上的一個動點,Q是圓(x-3)2+(y-1)2=1上的一個動點,N(1,0)是一個定點,則|PQ|+|PN|的最小值為( )
A.3 B.4
C.5 D.+1
(1)A (2
7、)A [(1)由y2=x,知2p=1,即p=,
因此焦點F,準(zhǔn)線l的方程為x=-.
設(shè)點A(x0,y0)到準(zhǔn)線l的距離為d,則由拋物線的定義可知d=|AF|.
從而x0+=x0,解得x0=1.
(2)由拋物線方程y2=4x,可得拋物線的焦點F(1,0),又N(1,0),所以N與F重合.
過圓(x-3)2+(y-1)2=1的圓心M作拋物線準(zhǔn)線的垂線MH,交圓于Q,交拋物線于P,則|PQ|+|PN|的最小值等于|MH|-1=3.]
[規(guī)律方法] 1.凡涉及拋物線上的點到焦點距離時,一般運用定義轉(zhuǎn)化為到準(zhǔn)線距離處理.如本例充分運用拋物線定義實施轉(zhuǎn)化,使解答簡捷、明快.
2.若P(
8、x0,y0)為拋物線y2=2px(p>0)上一點,由定義易得|PF|=x0+;若過焦點的弦AB的端點坐標(biāo)為A(x1,y1),B(x2,y2),則弦長為|AB|=x1+x2+p,x1+x2可由根與系數(shù)的關(guān)系整體求出.
[變式訓(xùn)練1] (20xx·鄭州調(diào)研)已知拋物線C:y2=8x的焦點為F,準(zhǔn)線為l,P是l上一點,Q是直線PF與C的一個交點,若=4 ,則|QF|=( )
A. B.
C.3 D.2
C [∵=4 ,
∴||=4||,
∴=.
如圖,過Q作QQ′⊥l,垂足為Q′,設(shè)l與x軸的交點為A,則|AF|=4,
∴==,
∴|QQ′|=3.
根據(jù)拋物線定義可知|QF|
9、=|QQ′|=3.]
拋物線的標(biāo)準(zhǔn)方程與幾何性質(zhì)
(1)點M(5,3)到拋物線y=ax2的準(zhǔn)線的距離為6,那么拋物線的標(biāo)準(zhǔn)方程是( )
【導(dǎo)學(xué)號:57962399】
A.x2=y(tǒng) B.x2=y(tǒng)或x2=-y
C.x2=-y D.x2=12y或x2=-36y
(2)(20xx·全國卷Ⅰ)以拋物線C的頂點為圓心的圓交C于A,B兩點,交C的準(zhǔn)線于D,E兩點.已知|AB|=4,|DE|=2,則C的焦點到準(zhǔn)線的距離為( )
A.2 B.4
C.6 D.8
(1)D (2)B [(1)將y=ax2化為x2=y(tǒng).
當(dāng)a>0時,準(zhǔn)線y=-,則3+=6,∴a=.
當(dāng)a<0時,準(zhǔn)
10、線y=-,則=6,∴a=-.
∴拋物線方程為x2=12y或x2=-36y.
(2)設(shè)拋物線的方程為y2=2px(p>0),圓的方程為x2+y2=r2.
∵|AB|=4,|DE|=2,
拋物線的準(zhǔn)線方程為x=-,
∴不妨設(shè)A,D.
∵點A,D在圓x2+y2=r2上,
∴∴+8=+5,∴p=4(負(fù)值舍去).
∴C的焦點到準(zhǔn)線的距離為4.
[規(guī)律方法] 1.求拋物線的標(biāo)準(zhǔn)方程的方法:
(1)求拋物線的標(biāo)準(zhǔn)方程常用待定系數(shù)法,因為未知數(shù)只有p,所以只需一個條件確定p值即可.
(2)因為拋物線方程有四種標(biāo)準(zhǔn)形式,因此求拋物線方程時,需先定位,再定量.
2.由拋物線的方程可以確定拋
11、物線的開口方向、焦點位置、焦點到準(zhǔn)線的距離;從而進(jìn)一步確定拋物線的焦點坐標(biāo)及準(zhǔn)線方程.
[變式訓(xùn)練2] (1)(20xx·河南中原名校聯(lián)考)拋物線y2=2px(p>0)的焦點為F,O為坐標(biāo)原點,M為拋物線上一點,且|MF|=4|OF|,△MFO的面積為4,則拋物線的方程為 ( )
【導(dǎo)學(xué)號:57962400】
A.y2=6x B.y2=8x
C.y2=16x D.y2=
(2)若拋物線y2=2px的焦點與橢圓+=1的右焦點重合,則該拋物線的準(zhǔn)線方程為__________.
(1)B (2)x=-2 [(1)設(shè)M(x,y),因為|OF|=,|MF|=4|OF|,
所以|MF|=
12、2p,
由拋物線定義知x+=2p,
所以x=p,所以y=±p.
又△MFO的面積為4,
所以××p=4,解得p=4(p=-4舍去).
所以拋物線的方程為y2=8x.
(2)由橢圓+=1,知a=3,b=,
所以c2=a2-b2=4,所以c=2.
因此橢圓的右焦點為(2,0),
又拋物線y2=2px的焦點為.
依題意,得=2,
于是拋物線的準(zhǔn)線x=-2.]
直線與拋物線的位置關(guān)系
角度1 直線與拋物線的交點問題
(20xx·全國卷Ⅰ)在直角坐標(biāo)系xOy中,直線l:y=t(t≠0)交y軸于點M,交拋物線C:y2=2px(p>0)于點P,M關(guān)于點P的對稱點為N,連接O
13、N并延長交C于點H.
(1)求;
(2)除H以外,直線MH與C是否有其他公共點?說明理由.
[解] (1)如圖,由已知得M(0,t),P.
又N為M關(guān)于點P的對稱點,
故N, 2分
故直線ON的方程為y=x,
將其代入y2=2px整理得px2-2t2x=0,
解得x1=0,x2=.因此H.
所以N為OH的中點,即=2. 5分
(2)直線MH與C除H以外沒有其他公共點.理由如下:
直線MH的方程為y-t=x,即x=(y-t). 8分
代入y2=2px得y2-4ty+4t2=0,解得y1=y(tǒng)2=2t,
即直線MH與C只有一個公共點,
所以除H以外,直線MH與C
14、沒有其他公共點. 12分
[規(guī)律方法] 1.(1)本題求解的關(guān)鍵是求出點N,H的坐標(biāo).(2)第(2)問將直線MH的方程與拋物線C的方程聯(lián)立,根據(jù)方程組的解的個數(shù)進(jìn)行判斷.
2.(1)判斷直線與圓錐曲線的交點個數(shù)時,可直接求解相應(yīng)方程組得到交點坐標(biāo),也可利用消元后的一元二次方程的判別式來確定,需注意利用判別式的前提是二次項系數(shù)不為0.(2)解題時注意應(yīng)用根與系數(shù)的關(guān)系及設(shè)而不求、整體代換的技巧.
角度2 與拋物線弦長或中點有關(guān)的問題
(20xx·泰安模擬)已知拋物線C:y2=2px(p>0)的焦點為F,拋物線C與直線l1:y=-x的一個交點的橫坐標(biāo)為8.
(1)求拋物線C的方程;
15、(2)不過原點的直線l2與l1的垂直,且與拋物線交于不同的兩點A,B,若線段AB的中點為P,且|OP|=|PB|,求△FAB的面積.
【導(dǎo)學(xué)號:57962401】
[解] (1)易知直線與拋物線的交點坐標(biāo)為(8,-8), 2分
∴(-8)2=2p×8,∴2p=8,∴拋物線方程為y2=8x. 5分
(2)直線l2與l1垂直,故可設(shè)直線l2:x=y(tǒng)+m,A(x1,y1),B(x2,y2),且直線l2與x軸的交點為M. 6分
由得y2-8y-8m=0,
Δ=64+32m>0,∴m>-2.
y1+y2=8,y1y2=-8m,
∴x1x2==m2. 8分
由題意可知OA⊥OB,即x
16、1x2+y1y2=m2-8m=0,
∴m=8或m=0(舍),
∴直線l2:x=y(tǒng)+8,M(8,0). 10分
故S△FAB=S△FMB+S△FMA=·|FM|·|y1-y2|
=3=24. 12分
[規(guī)律方法] 1.有關(guān)直線與拋物線的弦長問題,要注意直線是否過拋物線的焦點,若過拋物線的焦點,可直接使用公式|AB|=x1+x2+p,若不過焦點,則必須用一般弦長公式.
2.涉及拋物線的弦長、中點、距離等相關(guān)問題時,一般利用根與系數(shù)的關(guān)系采用“設(shè)而不求”“整體代入”等方法.
3.涉及弦的中點、斜率時,一般用“點差法”求解.
[思想與方法]
1.拋物線定義的實質(zhì)可歸結(jié)為“一動三定
17、”:一個動點M,一個定點F(拋物線的焦點),一條定直線l(拋物線的準(zhǔn)線),一個定值1(拋物線的離心率).
2.拋物線的定義中指明了拋物線上點到焦點的距離與到準(zhǔn)線距離的等價性,故二者可相互轉(zhuǎn)化,這一轉(zhuǎn)化思想在解題中有著重要作用.
3.拋物線的焦點弦:設(shè)過拋物線y2=2px(p>0)的焦點的直線與拋物線交于A(x1,y1),B(x2,y2),則:
(1)y1y2=-p2,x1x2=;
(2)若直線AB的傾斜角為θ,則|AB|==x1+x2+p.
[易錯與防范]
1.認(rèn)真區(qū)分四種形式的標(biāo)準(zhǔn)方程.
(1)區(qū)分y=ax2(a≠0)與y2=2px(p>0),前者不是拋物線的標(biāo)準(zhǔn)方程.
(2)求標(biāo)準(zhǔn)方程要先確定形式,必要時要進(jìn)行分類討論,標(biāo)準(zhǔn)方程有時可設(shè)為y2=mx或x2=my(m≠0).
2.直線與拋物線結(jié)合的問題,不要忘記驗證判別式.
3.拋物線的定義中易忽視“定點不在定直線上”這一條件,當(dāng)定點在定直線上時,動點的軌跡是過定點且與直線垂直的直線.當(dāng)直線與拋物線有一個公共點,并不表明直線與拋物線相切.