多軸鉆床主軸箱設計
《多軸鉆床主軸箱設計》由會員分享,可在線閱讀,更多相關《多軸鉆床主軸箱設計(30頁珍藏版)》請在裝配圖網(wǎng)上搜索。
本科畢業(yè)設計(論文) 題 目: 多軸鉆床主軸箱的設計 ________________________ 英文題目:The Design of spindle box for multi spindle drilling machine 學 院:________________________ 專 業(yè):________________________ 姓 名:________________________ 學 號:________________________ 指導教師:________________________ 2016年1月12日 畢業(yè)設計(論文)獨創(chuàng)性聲明 該畢業(yè)設計(論文)是我個人在導師指導下進行的研究工作及取得的研究成果。文中除了特別加以標注和致謝的地方外,不包含其他人或其他機構已經(jīng)發(fā)表或撰寫過的研究成果。其他同志對本研究的啟發(fā)和所做的貢獻均已在論文中作了明確的聲明并表示了謝意。 作者簽名: 日期: 年 月 日 畢業(yè)設計(論文)使用授權聲明 本人完全了解XX學院有關保留、使用畢業(yè)設計(論文)的規(guī)定,即:學校有權保留送交畢業(yè)設計(論文)的復印件,允許被查閱和借閱;學校可以公布全部或部分內(nèi)容,可以采用影印、縮印或其他復制手段保存該畢業(yè)設計(論文)。保密的畢業(yè)設計(論文)在解密后遵守此規(guī)定。 作者簽名: 導師簽名: 日期: 年 月 日 摘要 本設計介紹了多軸鉆床主軸箱的設計,設計中首先要了解工件的加工工藝路線及工序的計算,確定鉆孔主軸的直徑,初步選用電機型號及機床各部分部件。在多軸箱設計中,首先需要確定傳動系統(tǒng),然后計算主軸坐標,傳動部件的校核及最后多軸鉆床主軸箱總圖、原始依據(jù)圖等等相關圖紙的繪制。 本次設計有效地將多工位鉆孔工藝有機地結合為一體,這樣以來不但降低了機器成本,而且節(jié)省了加工時間,提高了工作生產(chǎn)效率。 關鍵詞: 多軸鉆床主軸箱,主軸,總圖繪制,生產(chǎn)效率 Abstract The design on the Box axlebox more than the design, design is first necessary to understand the workpiece in the processing line and process of calculation to determine Tapping the spindle diameter, the initial choice of motor Model and some parts of the machine. In multi-axle box design, drive system established to calculate coordinates spindle, transmission parts of the spindle box and check the total mapping. This design will be drilling, tapping combination of the two as one and reduce the cost of machinery, processing and save time, improve the work efficiency of production. Key words: Multi axis drilling machine spindle, spindle, general layout drawing, production efficiency I XX學院機械設計制造及其自動化專業(yè)畢業(yè)設計 目 錄 摘要 I Abstract II 1 緒論 1 1.1 本課題研究的背景及意義 1 1.2 本課題國內(nèi)外研究概況 2 1.3 研究的主要內(nèi)容 4 2 組合機床總體設計 6 2.1 組合機床工藝方案擬定 8 2.2 加工工序圖 10 2.3 加工示意圖 12 2.3.1 刀具的分析 13 2.3.2 鉆孔靠模裝置選擇 14 2.3.3 選擇接桿、浮動卡頭 15 2.3.4 動力部件工作循環(huán)及行程的確定 17 2.4 機床聯(lián)系尺寸圖 18 2.5 機床生產(chǎn)率計算卡 19 3 多軸鉆床主軸箱的設計 20 3.1 多軸箱的組成及表示方法 21 3.2 多軸箱通用零件 21 3.3 繪制多軸箱原始依據(jù)圖 22 3.4 主軸齒輪確定、動力計算 23 3.5 多軸箱傳動系統(tǒng)設計 25 3.6 多軸箱坐標檢查圖 25 結論 26 致謝 27 參考文獻 28 1 緒論 1.1本課題研究的背景及意義 隨著現(xiàn)代化工業(yè)技術的快速發(fā)展,特別是隨著它在自動化領域內(nèi)的快速發(fā)展,組合機床的研究已經(jīng)成為當今機器制造界的一個重要方向,在現(xiàn)代工業(yè)運用中,大多數(shù)機器的設計和制造都是用機床大批量完成的?,F(xiàn)代大型工業(yè)技術的飛速發(fā)展,降低了組合機床的實現(xiàn)成本,軟件支持機制也使得實現(xiàn)變得更為簡單,因此,研究組合機床的設計具有十分重要的理論意義和現(xiàn)實意義。 因此,本課題基于使設計出的機床結構簡單、使用方便、效率高、質(zhì)量好提出的要求,著重選擇最佳的工藝方案,合適地確定機床工序集中程度,合理地選擇組合機床的通用部件,恰當?shù)慕M合機床的配置型式,合理地選擇切削用量,以及設計高效率的夾具、工具、刀具及主軸箱就是本次設計主要內(nèi)容。具體的工作就是要制定工藝方案,進行機床結構方案的分析和確定,進行組合機床總體設計,組合機床的部件設計和施工設計,使其具有工程意義,實現(xiàn)其在實際應用中的價值。 1.2本課題國內(nèi)外研究概況 近20年來,組合機床自動線技術取得長足進步,自動線在加工精度、生產(chǎn)效率、利用率、柔性化和綜合自動化等方面的巨大進步,標志著組合機床自動線技術發(fā)展達到了高水平。自動線的技術發(fā)展,刀具、控制和其他相關技術的進步,特別是CNC控制技術發(fā)展對自動線結構的變革及其柔性化起著決定性的作用。隨著市場需求的變化,柔性將愈來愈成為抉擇設備的重要因素。因此,組合機床自動線將面臨由高速加工中心組成的FMS的激烈競爭。 組合機床是一種專用高效自動化技術裝備,目前,由于它仍是大批量機械產(chǎn)品實現(xiàn)高效、高質(zhì)量和經(jīng)濟性生產(chǎn)的關鍵裝備,因而被廣泛應用于汽車、拖拉機、內(nèi)燃機和壓縮機等許多工業(yè)生產(chǎn)領域。其中,特別是汽車工業(yè),是組合機床最大的用戶。如德國大眾汽車廠在Salzgitter的發(fā)動機工廠,在大批量生產(chǎn)的機械工業(yè)部門,大量采用的設備是組合機床。因此,組合機床的技術性能和綜合自動化水平,在很大程度上決定了這些工業(yè)部門產(chǎn)品的生產(chǎn)效率、產(chǎn)品質(zhì)量和企業(yè)生產(chǎn)組織的結構,也在很大程度上決定了企業(yè)產(chǎn)品的競爭力。 1.3研究的主要內(nèi)容 本次設計主要針對多軸鉆床主軸箱進行設計,從多軸鉆床主軸箱的整理方案出發(fā),然后具體細化出具體內(nèi)部結構,其具體內(nèi)部結構主要包括以下幾個方面: 1) 分析多軸鉆床主軸箱及其技術條件,收集設計資料; 2) 完成開題報告; 3) 主軸箱總體方案的確定; 4) 繪制主軸箱原始依據(jù)圖,坐標檢查圖以及主軸箱裝配圖等; 5)完成畢業(yè)設計論文。 2 組合機床的總體設計 2.1 組合機床工藝方案的擬定 工藝方案的擬訂是組合機床設計的關鍵一步。因為工藝方案在很大程度上決定了組合機床的結構配置和使用性能。因此,應根據(jù)工件的加工要求和特點,按一定的原則、結合組合機床常用工藝方法、充分考慮各種影響因素,并經(jīng)技術經(jīng)濟分析后擬出先進、合理、經(jīng)濟、可靠的工藝方案。 2.2 加工工序圖 被加工零件工序圖具有直觀的作用,此外,它還具有一些特定的要求。被加工零件工序圖是根據(jù)選定的工藝方案,表示在一臺機床上或一條自動線上完成的工藝內(nèi)容,加工部位的尺寸及精度、技術要求、加工用定位基準、夾壓部以及被加工零件的材料、硬度和在本機床上加工前毛坯情況的圖紙。它是在原有的工件圖基礎上,以突出本機床或自動線加工內(nèi)容,加上必要的說明繪制的。它是組合機床設計的主要依據(jù)。也是制造使用時調(diào)整機床,檢查精度的重要技術文件。被加工零件工序圖應包括下列內(nèi)容: 加工示意圖是組合機床設計的重要圖紙之一,在機床總體設計中占有重要地位。它是設計刀具、夾具、主軸箱以及選擇動力部件的主要資料,同時也是調(diào)整機床和刀具的依據(jù)。 2.3.1 刀具的選擇 刀具的類型的選擇決定于所鉆內(nèi)孔的性質(zhì)、所鉆內(nèi)孔在工件上的位置、工件的構造與尺寸及生產(chǎn)的批量,一般根據(jù)相關工件的材料來進行鉆頭的選取,通常選用細柄機用鉆刀H3(GB3464-83)。 2.3.2 鉆孔靠模裝置選擇 在組合機床上鉆內(nèi)孔多采用鉆孔靠模裝置。其原理仍然是“自引法”鉆孔。這種鉆孔裝置的進給運動,直接由靠模螺桿、螺母得到。常用的靠模裝置有:TO281型鉆孔靠模裝置和TO282型靠模裝置。 本設計中采用了通用的TO281型鉆孔靠模裝置 TO281型鉆孔靠模 這種靠模裝置有鉆孔靠模和鉆孔卡頭配合組成,并由鉆孔裝置配置成鉆孔組合機床。 2.3.3 選擇接桿、浮動卡頭 加工內(nèi)孔時,常采用鉆孔靠模裝置和鉆孔卡頭及相配套的鉆孔接桿,鉆刀用相應的彈簧夾頭裝在鉆孔接桿上。選用用于夾持M6~M30的機用鉆刀彈簧夾頭,選用鉆孔卡頭及鉆孔接桿。 2.3.4 動力部件工作循環(huán)及行程的確定 動力部件的工作循環(huán)是指加工時,動力部件從原始位置開始運動到加工終了位置,又返回到原位的動作過程。 2.4 機床聯(lián)系尺寸圖 2.4.1機床聯(lián)系尺寸圖作用和內(nèi)容 機床聯(lián)系尺寸圖是以被加工零件工序圖和加工示意圖為依據(jù),并按初步選定的主要通用部件以及確定專用部件的總體結構而繪制的。是用來表示機床的配置形式、主要構成及各部件安裝位置、相互關系、運動關系和操作方位的總體布局圖。 2.4.2繪制機床尺寸聯(lián)系總圖之前應確定的內(nèi)容 2.4.2.1 選擇動力部件 動力部件的選擇主要是確定動力箱和動力滑臺。根據(jù)已定的工藝方案和機床配置形式并結合使用及修理因素,確定機床為臥式雙面單工位液壓傳動組合機床,液壓滑臺實現(xiàn)工作進給運動,選用配套的動力箱驅動多軸箱鉆孔主軸。 動力箱規(guī)格與滑臺要匹配,其驅動功率主要依據(jù)是根據(jù)多軸箱所傳遞的切屑功率來選用。確定鉆孔電機功率,應考慮鉆刀鈍化的影響,一般按計算功率的1.5~2.5倍選取。 式中:——消耗于各主軸的切削功率的總和,單位為kw; ——主軸箱的傳動效率,加工黑色金屬時取0.8~0.9,加工有色金 屬時取0.7~0.8,主軸數(shù)多、傳動復雜時取小值,反之取大值。 則: =6x0.1636/0.8=1.09kw 1.09x2=2.18kw 本機床左右多軸箱均采用1TD25-IB型動力箱(=1420r/min;電動機選Y100L1-4型,功率為2.2KW)。 2.5 機床生產(chǎn)率計算卡 根據(jù)加工示意圖所確定的工作循環(huán)及切削用量等,就可以計算機床生產(chǎn)率并編制生產(chǎn)率計算卡。生產(chǎn)率計算卡是反映機床生產(chǎn)節(jié)拍或實際生產(chǎn)率和切削用量、動作時間、生產(chǎn)綱領及負荷率等關系的技術文件。它是用戶驗收機床生產(chǎn)效率的重要依據(jù)。 2.5.1 理想生產(chǎn)率Q 理想生產(chǎn)率是指完成年生產(chǎn)綱領A 所要求的機床生產(chǎn)率。與全年工時tk 總數(shù)有關,單班制取2350h A=5000x(1+2%+2%)=520件 Q=A/tk=5200/2350=2.21件/h 2.5.2 實際生產(chǎn)率Q1 實際生產(chǎn)率是指設計機床每小時實際可生產(chǎn)的零件數(shù)量。 Q1=60/T單 式中 T單——生產(chǎn)一個零件所需的時間(min), 可按下式計算: T單=t切+t輔=(L1/vf1+ L2/vf2+t停)+[(L快進+L快退)/vfk+ t移+ t裝] L1、L2——刀具第一、第二工作進給長度,單位為mm; vf1 vf2——刀具第一、第二工作進給量,單位為mm/min; t?!ǔ5毒咴诩庸そK了時無進給狀態(tài)下旋轉5~10轉所需的時間,單位為min;取0.1min,即6s. vfk——動力部件快速行程速度。 本次采用的是液壓動力部件, 為5m/min。 t移——回轉工作臺進行一次工位轉換時間,一般取0.1 min;此道工序可忽略。 t裝——工件裝、卸的時間(包括定位或撤消定位、夾緊或松開、清理基面或切屑及調(diào)運工件等的時間)通常.取0.5-1.5min.取1.5min . 把數(shù)值帶入(2-13)中: 得到:T單=23/397.5+23/397.5+0.1+0.075/5+0.075/5+1.5 =1.7456min; 所以Q1=60/T單=60/1.71=34.32件/小時 則 Q1≥Q 所以滿足生產(chǎn)率要求 3 多軸鉆孔主軸箱的設計 3.1多軸箱的組成及表示方法 多軸箱按結構特點分為通用(即標準)和專用多軸箱兩大類。前者結構典型,能利用同用的箱體和傳動件;后者結構特殊,往往需要加強主軸系統(tǒng)剛性,而使主軸及某些傳動件必須專門設計,故專用主軸箱通常指“剛性主軸箱”,即采用不需要刀具導向裝置的剛性主軸和用精密滑臺導軌來保證加工孔的位置精度。通用主軸箱則采用標準主軸,借助導向套引導刀具來保證被加工孔的位置精度。 本設計中所采用的就是通用主軸箱。 3.1.1 多軸箱的組成 多軸箱由通用零件如箱體、主軸、傳動軸、齒輪和附加機構等組成。其基本結構中,箱體、前蓋、后蓋、上蓋、側蓋等為箱體類零件;主軸、傳動軸、傳動齒輪、動力箱和電動機齒輪等為傳動類零件;分油器、注油標、排油塞、和防油套等為潤滑及防油元件。 在多軸箱箱體內(nèi)腔,可安排兩排32mm寬的齒輪或三排24mm寬的齒輪;箱體后壁與后蓋之間可安排一排(后蓋用90mm厚時)或兩排(后蓋用125mm厚時)24mm寬的齒輪。 本多軸箱考慮到實際情況,在箱體體內(nèi)安排了三排24mm寬的齒輪和一排32mm寬的齒輪。 3.1.2 多軸箱總圖繪制方法特點 [1]主視圖 用點劃線表示齒輪節(jié)圓,標注齒輪齒數(shù)和模數(shù),兩嚙合齒輪相切處標注羅馬字母,表示齒輪所在排數(shù)。標注各軸軸號及主軸和驅動軸、液壓泵軸的轉速和方向。 [2]展開圖 每根軸、軸承、齒輪等組件只畫軸線上邊或下邊(左邊或右邊)一半,對于結構尺寸完全相同的軸組件只畫一根,但必須在軸端注明相應的軸號;齒輪可不按比例繪制,在圖形一側用數(shù)碼箭頭標明齒輪所在排數(shù)。 3.2 多軸箱通用零件 多軸箱的通用零件的編號方法如下: T07或1T07系指與TD或與1TD系列動力箱配套的主軸箱同用零件,其標記方法詳見相應的配套零件表。 3.2.1 通用箱體類零件 多軸箱的通用箱體類零件配套表詳見《組合機床設計簡明手冊》中表7-4;箱體材料為HT200,前、后、側蓋等材料為HT150。多軸箱體基本尺寸系列標準(GB3668.1-83)規(guī)定,9種名義尺寸用相應滑臺的滑鞍寬度表示,多軸箱體寬度和高度是根據(jù)配套滑臺的規(guī)格按規(guī)定的系列尺寸([9]中表7-1)選擇;多軸箱后蓋與動力箱法蘭尺寸見[9]中表7-2,其結合面上聯(lián)接螺孔、定位銷孔及其位置與動力箱聯(lián)系尺寸相適應;通用多軸箱體結構尺寸及螺孔位置詳見相關資料。 3.2.2 通用主軸、通用傳動軸、通用齒輪和套 本設計中,通用主軸、通用傳動軸的傳動結構,配套零件及聯(lián)系尺寸。多軸箱通用齒輪有:傳動齒輪、動力箱齒輪和電機齒輪三種(見[9]表4-5),其結構型式、尺寸參數(shù)及制造裝配要求詳見[9]表。 多軸箱用套和防油套綜合表參閱[9]表7-24、表7-23。 3.3 繪制多軸箱設計原始依據(jù)圖 多軸箱設計原始原始依據(jù)圖,是根據(jù)“三圖一卡”整理編繪出來的。其內(nèi)容及注意事項如下: [1] 根據(jù)機床聯(lián)系尺寸圖,繪制多軸箱外形圖,并標注輪廓尺寸及動力箱驅動軸的相對位置尺寸。 [2] 根據(jù)聯(lián)系尺寸圖和加工示意圖,標注所有主軸位置尺寸及工件與主軸、主軸與驅動軸的相關位置尺寸。 [3] 根據(jù)加工示意圖標注各主軸轉速及轉向主軸逆時針轉向。 [4] 列表標明各主軸的工序內(nèi)容、切削用量及主軸外伸尺寸。 [5] 標明動力件型號及其性能參數(shù)。 3.4 主軸、齒輪的確定及動力計算 主軸的型式和直徑,主要取決于加工工藝方法、刀具主軸聯(lián)接結構、刀具的進給抗力和切削轉矩。 鉆孔類主軸按支承型式分為兩種:[1]前后支承均為圓錐滾子軸承主軸。 [2] 前后支承均為推力球軸承和無內(nèi)環(huán)滾針軸承的主軸。 3.4.1 主軸型式的確定 本設計中根據(jù)加工工藝要求,采用了第一種前后支承均為圓錐滾子軸承主軸。其裝配結構、配套零件及聯(lián)系尺寸詳見《組合機床設計簡明手冊》中第七章第二節(jié)。 主軸材料采用了40Cr鋼,熱處理C42。 3.4.2 主軸直徑的確定 根據(jù)被加工零件工序圖和加工示意圖中的要求,是采用標準高速鋼鉆刀,對箱體上2-孔進行鉆孔。 根據(jù)公式:d=6.2 (3-1) 可算出本設計中鉆孔主軸的大致直徑 式中:d——主軸直徑(mm) T——轉矩(Nm) 加工1#灰鑄鐵時T=0.195DP,由于本設計中D=5mm,P=0.8mm,所以 查[9]中表3-5鉆孔主軸直徑的確定,得螺紋M5的主軸直徑d=17mm 轉矩T=5N.mm 查[9]中表4-2得 主軸直徑d=20mm。 3.4.3 主軸位置的確定 由于是2根主軸同時對2個內(nèi)孔進行鉆孔加工,所以2根主軸的相對位置應與2個孔的相對位置保持一致。 3.4.4齒輪模數(shù) 齒輪模數(shù)m一般用類比法確定。 多軸箱中的齒數(shù)模數(shù)常用2、2.5、3、3.5、4幾種。為便于生產(chǎn),同一多軸箱中的模數(shù)規(guī)格最好不要大于兩種。 本設計齒輪模數(shù)選2和3。 3.4.5 多軸箱所需動力的計算 多軸箱的動力計算包括多軸箱所需要的功率和進給力兩項。 3.4.5.1傳動系統(tǒng)確定之后,多軸箱所需要的功率按下列公式計算 (3-2) 式中 ——切削功率,單位為KW ——空轉功率,單位為KW ——與負荷成正比的功率損失,單位為KW 每根主軸的切削功率,由選定的切削用量按公式計算或查圖表獲得;每根主軸的空轉功率按[9]P62表4-6確定;每根主軸上的功率損失,一般取所傳遞功率的1%。 3.4.5.2 主軸切削功率 ==0.1636KW =3P=3x0.1636=0.49KW 3.4.5.3 空轉功率 由于主軸直徑為20mm,根據(jù)[9]P62表4-6: 主軸轉速為n=318r/min,根據(jù)插值法: (3-3) =3x0.028=0.084KW 3.4.5.4 功率損失 每根軸上的功率損失,一般可取所傳遞功率的1% =(0.9821+0.168)x1%=0.0115KW (3-4) 3.4.5.5 多軸箱所需進給力計算 (3-5) 式中 ——各主軸所需的軸向切削力,單位為N F===5973.23N (3-6) =3F=3x5973.23=17919.352N 3.5 多軸箱傳動系統(tǒng)設計 多軸箱傳動系統(tǒng)設計,是根據(jù)動力箱驅動軸位置和轉速、各主軸位置及其轉速要求,設計傳動鏈,把驅動軸與各主軸連接起來,使各主軸獲得預定的轉速和轉向。 3.5.1 對多軸箱傳動系統(tǒng)的一般要求 在保證主軸的強度、剛度、轉速和轉向的條件下,力求使傳動軸和齒輪的規(guī)格、數(shù)量為最少。因此,應盡量用用一根中間傳動軸帶動多根主軸,并將齒輪布置在同一排上。當中心距不符合標準時,可采用變位齒輪或略微改動傳動比的方法解決。 3.5.2 擬訂多軸箱傳動系統(tǒng)的基本方法 擬訂多軸箱傳動系統(tǒng)的基本方法是:先把全部主軸中心盡可能的分布在幾個同心圓上,在各個同心圓的圓心上分貝設置中心傳動軸;非同心圓分布的一些主軸,也宜設置中間傳動軸(如一根傳動軸帶兩根或三根主軸);然后根據(jù)已選定的各中心傳動軸再取同心圓,并用最少的傳動軸帶動這些中心傳動軸;最后通過合攏傳動軸與動力箱驅動軸連接起來。 3.5.2.1主軸分布類型 多組同心圓分布。對這類主軸,可在同心圓處分別設置中心傳動軸,由其上的一個或幾個(不同排數(shù))齒輪來帶動各主軸。 采用一根傳動軸帶動3根主軸的方案。 此方案傳動軸、齒輪數(shù)最少,用一根傳動軸帶動多根主軸。主軸齒輪規(guī)格相同。 3.5.2.2傳動系統(tǒng)的設計計算 [1] 各齒輪參數(shù)的設計計算:齒輪齒數(shù)和傳動軸轉速的計算公式如下: u = = (3-7) A = = (3-8) (3-9) (3-10) (3-11) (3-12) 式中 u——嚙合齒輪副傳動比; S——嚙合齒輪副齒數(shù)和; z、z——分別為主動和從動齒輪齒數(shù); n、n——分別為主動和從動齒輪轉速,單位為r/min; A——齒輪嚙合中心距,單位為mm; M——齒輪模數(shù),單位為mm。 已知:主軸轉速 n=785r/min,主軸直徑 d=20mm,主軸齒輪模數(shù) m=2。 取驅動軸齒輪的模數(shù)m=3,齒數(shù)=23(數(shù)量1個,設在第Ⅳ排)。 [2] 傳動軸1即軸4的齒輪參數(shù)計算設計 = m=3 (數(shù)量1個,設在第Ⅳ排) 轉速 [3] 傳動軸2即軸5的齒輪參數(shù)計算設計 = m=3 (數(shù)量1個,設在第Ⅳ排) 轉速 [4] 主軸1、2、3即軸1、3、2的齒輪參數(shù)計算設計 取傳動軸齒輪的模數(shù)m=2,齒數(shù)=24(數(shù)量2個,分別設在第Ⅱ、Ⅲ排)。 m=2 轉速 主軸1、3即軸1、2(數(shù)量各1個,設在第Ⅲ排)。 主軸2即軸3(數(shù)量1個,設在第Ⅱ排)。 [5] 主軸4、5、6即軸6、8、7的齒輪參數(shù)計算設計 取傳動軸齒輪的模數(shù)m=2,齒數(shù)=21(數(shù)量2個,分別設在第Ⅱ、Ⅲ排)。 M=2 轉速 主軸4、6即軸1、2(數(shù)量各1個,設在第Ⅱ排)。 主軸5即軸8(數(shù)量1個,設在第Ⅲ排)。 3.5.2.3 潤滑油泵的安置 油泵軸的位置要盡可能靠近油池,離油面高度不大于400~500毫米;油泵軸的轉速,須根據(jù)工作條件而定,主軸數(shù)目多,油泵轉速應選的高些。當用R12-1型葉片泵時,油泵轉速可在400~900轉/分范圍內(nèi)選擇。當箱體寬度大于800毫米,主軸數(shù)多于30根時,最好采用兩個油泵,以保證充分潤滑。 本主軸箱內(nèi)采用了一個R12-1型葉片泵,為了便于維修,油泵齒輪布置在了第一排。油泵的安置要使其回轉方向保證進油口到排油口轉過270。轉速為902r/min。 3.5.2.4 手柄軸的安置 多軸箱一般設手柄軸,用于對刀、調(diào)整、或裝配檢修時檢查主軸精度。手柄軸轉速盡量高些,其周圍應有較大空間。 本設計手柄軸的轉速為722r/min。 3.5.2.5 驗算和校核 [1] 驗算各主軸轉速 <318x(1+5%)=334r/min <318x(1+5%)=334r/min 轉速相對損失在5%以內(nèi),符合設計要求 [2] 齒輪模數(shù)校核 分析:傳動過程中,齒輪嚙合會產(chǎn)生很大的彎曲疲勞強度,在所有齒輪嚙合過程中,以動力頭齒輪和齒輪嚙合產(chǎn)生的應力最大。因此選取動力頭齒輪進行模數(shù)計算: 查[3]P209,公式10-5 有: (2-13) 公式中: 為載荷系數(shù) :使用系數(shù),查P201 ,表10-2,取=1.25 :動載系數(shù),查P202 ,圖10-8,取=1.25 :齒間載荷分布系數(shù),查P203 ,表10-3,取=1.0 :齒間載荷分布系數(shù), 查P204 ,表10-4,取=1.117 T:傳遞扭矩; (2-14) 因為傳遞的功率較小,選取,, 、查P209,表10-5 查P216,圖表10-20c,=427 (2-15) 由于齒輪模數(shù)大小取決于彎曲強度所決定的承載能力。m=3>2.52,完全滿足疲勞強度要求。因此所取齒輪模數(shù)滿足使用及性能要求。 [3] 軸的強度校核 從上述可知,各軸所能承受的扭矩: 軸d=20mm 通過計算各軸所承受載荷的情況: <1100 由此可以得出,各軸實際承受的扭矩遠遠小于軸所能承受的扭矩最大值。因此其強度完全滿足要求。 多軸箱總裝配圖如下圖所示 3.6多軸箱坐標計算檢查圖 坐標計算是根據(jù)已知的驅動軸和主軸的位置以及傳動關系,精確計算各中間傳動軸的坐標。其目的是為多軸箱箱體零件補充加工圖提供孔的坐標尺寸,并用于繪制坐標檢查圖來檢查齒輪排列、結構布置是否合理。多軸箱坐標計算步驟、要求如下: 3.6.1 選擇加工基準坐標系XOY,計算主軸、驅動軸坐標 3.6.1.1加工基準坐標系的選擇 為便于加工多軸箱體,設計時必須選擇基準坐標系。通常采用直角坐標系XOY。 在本設計中,由于多軸箱是直接安裝在動力箱上,因此,加工基準坐標系的選擇按照第一種方法,坐標原點選在定位銷孔上。 3.6.1.2 計算主軸以及驅動軸的坐標 根據(jù)多軸箱設計原始依據(jù)圖,按照選定的基準坐標系XOY,計算或者標出各個主軸以及驅動軸的坐標(計算精度要求精確到小數(shù)點后面三位數(shù))。如果零件上孔距尺寸帶有單向或者雙向不等公差,則在標注坐標時,應該把公差考慮進去,使孔距的名義坐標尺寸恰好位于公差帶的中央。六軸鉆孔多軸箱各主軸、驅動軸坐標值見下表: 坐標 銷O 驅動軸0 主軸1 主軸2 主軸3 主軸4 主軸5 主軸6 X 0.000 94.500 51.000 103.000 155.000 210.000 253.000 296.000 Y 0.000 175.000 179.000 209.000 179.500 174.500 199.500 174.500 3.6.2 計算傳動軸的坐標 3.6.2.1 與一軸定距的傳動軸坐標計算 軸9坐標計算 已知軸5的坐標(253.000,150.150),軸9的坐標(253.000,51.330)。軸5與軸9之間的齒輪傳動參數(shù)(=40,=25,m=3)。 在圖中量得X=0.000,Y=97.500 根據(jù)嚙合中心距-9=m(+)/2=97.5(與實測結果相符),計算可得 x= ==0 y= ==97.500 =-x=253.000-0=253.000 =-y=150.150-97.500=51.330 軸10坐標計算 已知軸3的坐標(103.000,209.500),軸10的坐標(73.360,277.440)。軸3與軸10之間的齒輪傳動參數(shù)(=50, =24,m=2)。 在圖中量得X=29.640,Y=67.800 根據(jù)嚙合中心距-10=m(+)/2=74(與實測結果相符),計算可得 x= ==29.65063237 y= ==67.80464881 =-x=103.000-29.65063237=73.34936763 =+y=209.500+67.80464881=277.30464880 3.6.2.2 與三軸定距的傳動軸坐標計算 傳動軸4坐標計算 =x3-x1=103.000-51.000=52.000 =y3-y1=209.500-179.500=30.000 =x2-x1=155.00-51.000=104.000 =y2-y1=179.500-179.500=0 =3604 =10816 =52 = -30.06666667 =51.000+52=103.000 =179.500-30.06666667=149.4333333 [2] 傳動軸5坐標計算 =x8-x6=253.00-210.00=43.000 =y8-y6=199.500-174.500=25.000 =x7-x6=296.000-210.000=86.000 =y7-y6=174.500-174.500=0 =2474 =7396 =43 = -24.48 =210.000+43=253.000 =174.500-24.48=150.020 3.6.3 驗算中心距誤差 多軸箱體上的孔系是按照計算的坐標加工的,而裝配要求兩軸間齒輪能正常嚙合。因此,必須驗算根據(jù)坐標計算確定的實際中心距A,是否符合兩軸間齒輪嚙合要求的標準中心距R,R與A的差值δ為δ=R-A。 驗算標準:中心距允差[δ]≤(0.001~0.009)mm 3.6.3.1 傳動軸與一軸定距驗算 軸10與軸3的中心距誤差 δ=R-A===0mm [2] 軸9與軸5的中心距誤差 δ=R-A===-0.006539816mm<0.009mm,滿足齒輪嚙合要求。 3.6.3.2 傳動軸與三軸定距驗算 傳動軸與三軸定距驗公式δ= [1] 傳動軸4與軸1、2、3的中心距誤差 δ=R-A = 傳動軸4與軸1、2、3之間的標準中心距分別為、、 ===60mm 傳動軸4與軸1、2、3之間的實際中心距分別為、、 == =60.06666668mm == =60.06666668mm == =60.06666667mm 中心距誤差分別為 δ4-1==60-60.06666668≈-0.067mm δ4-2==60-60.06666668≈-0.067mm δ4-3==60-60.066666667≈-0.067mm δ4-1、δ4-2、δ4-3都大于0.009,因此軸4與軸1、軸4與軸2、軸4與軸3之間的齒輪需要采用變位齒輪,變位量為Δ=0.067mm,Δ=0.067mm,Δ=0.067mm。 其中多軸鉆床主軸箱檢查尺寸坐標圖如下圖所示: 多軸鉆床主軸箱檢查尺寸坐標圖 結 論 在最近的一段時間的畢業(yè)設計,使我們充分把握的設計方法和步驟,不僅復習所學的知識,而且還獲得新的經(jīng)驗與啟示,在各種軟件的使用找到的資料或圖紙設計,會遇到不清楚的作業(yè),老師和學生都能給予及時的指導,確保設計進度,本文所設計的是多軸鉆床主軸箱的設計,通過初期的定稿,查資料和開始正式做畢設,讓我系統(tǒng)地了解到了所學知識的重要性,從而讓我更加深刻地體會到做一門學問不易,需要不斷鉆研,不斷進取才可要做的好,總之,本設計完成了老師和同學的幫助下,在大學研究的最感謝幫助過我的老師和同學,是大家的幫助才使我的論文得以通過。 致 謝 至此在論文完成之際,向我的導師表示由衷的感謝!真心的感謝我的導師這幾年來對我的諄諄教導,感謝我敬愛的老師,您不僅在學習學業(yè)上給我以精心的指導,同時還在思想給我以無微不至的關懷支持和理解,給予我人生的啟迪,使我在順利地完成大學階段的學業(yè)同時,也學到了很多有用的做人的道理,明確了人生目標。知道自己想要什么了,不再是從前那個愛貪玩的我了。導師嚴謹求實的治學態(tài)度,銳意創(chuàng)新的學術作風,認真加負責,公而忘私的敬業(yè)精神,豁達開朗的寬廣胸懷,平易近人。經(jīng)過近半年努力的設計與計算,查找了各類多軸鉆床主軸箱的設計資料,論文終于可以完成了,我的心里無比的激動和開心。雖然它不是最完美的,也不是最好的,但是在我心里,它是我最珍惜的,因為我自己已經(jīng)盡力的做了,它是我用心、用汗水成就的,也是我在大學四年來對所學知識的應用和體現(xiàn)。四年的學習和生活,不僅豐富了我的知識,而且鍛煉了我的個人能力,更重要的是從周圍的老師和同學們身上潛移默化的學到了許多有用的知識,在此對所有關心我?guī)椭业谋磉_我由衷敬意,謝謝各位同學老師。 參考文獻 [1] 林述溫、范楊波主編.多軸鉆床主軸箱的設計.北京:機械工業(yè)出版社.2002 [2] 大連組合機床研究所編.組合機床設計手冊第一冊.北京:機械工業(yè)出版社.1975 [3] 大連組合機床研究所.機械工程手冊第62篇.北京:機械工業(yè)出版社.1980 [4] 朱龍根編.簡明機械零件設計手冊.北京:機械工業(yè)出版社.1997 [5] 大連組合機床研究所編.組合機床設計參考圖冊.北京:機械工業(yè)出版社.1975 [6] 東北重型機械學院等編.多軸箱設計手冊.上海:上??萍汲霭嫔?1988 [7] 徐英南.組合機床及自動線的使用與調(diào)試.北京:機械工業(yè)出版社.1990 [8] 沈陽工業(yè)大學等編.組合機床設計.上海:上??萍汲霭嫔?1994 [9] 謝家贏主編.多軸箱設計簡明手冊. 北京:機械工業(yè)出版社.1994 [10] 趙如福主編.機械加工工藝人員手冊.上海:上海科技出版社.1990 [11] 金振華主編.組合機床及其調(diào)整與使用.北京:機械工業(yè)出版社.1990 [12] International Machine Tool Design and Research Conference.Advances in machine tool design and research .Pergamon.1965 [13] Freeman, Henry G. Dictionary of metal-cutting machine tools .Verlag W. Girardet.1965 [14] Barun, V. A.Budinskii, Aaron Abramovich,Machine Tool Industry Research Association.Automatic control systems for machine tools .National Lending Library for Science and Technology.1968 22- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 鉆床 主軸 設計
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.italysoccerbets.com/p-6403661.html