【備戰(zhàn)】北京版高考數(shù)學(xué)分項(xiàng)匯編 專題12 概率和統(tǒng)計(jì)含解析理
-
資源ID:65993920
資源大?。?span id="r2ju8pc" class="font-tahoma">1.97MB
全文頁數(shù):12頁
- 資源格式: DOC
下載積分:10積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。
|
【備戰(zhàn)】北京版高考數(shù)學(xué)分項(xiàng)匯編 專題12 概率和統(tǒng)計(jì)含解析理
專題12 概率和統(tǒng)計(jì)1. 【2012高考北京理第2題】設(shè)不等式組,表示平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一個點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離大于2的概率是( )(A) (B) (C) (D)【答案】D考點(diǎn):幾何概型概率.2. 【2012高考北京理第8題】某棵果樹前n前的總產(chǎn)量S與n之間的關(guān)系如圖所示.從目前記錄的結(jié)果看,前m年的年平均產(chǎn)量最高m值為( )A.5 B.7 C.9 D.11【答案】C考點(diǎn):平均數(shù).3. 【2010高考北京理第11題】從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖)由圖中數(shù)據(jù)可知a_.若要從身高在120,130),130,140),140,150三組內(nèi)的學(xué)生中,用分層抽樣的方法選取18人參加一項(xiàng)活動,則從身高在140,150內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為_【答案】0.0303考點(diǎn):頻率分布直方圖.4. 【2005高考北京理第17題】(本小題共13分)甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率為 ()記甲擊中目標(biāo)的次數(shù)為,求的概率分布及數(shù)學(xué)期望E;()求乙至多擊中目標(biāo)2次的概率;()求甲恰好比乙多擊中目標(biāo)2次的概率.【答案】5. 【2006高考北京理第18題】(本小題共13分)某公司招聘員工,指定三門考試課程,有兩種考試方案.方案一:考試三門課程,至少有兩門及格為考試通過;方案二:在三門課程中,隨機(jī)選取兩門,這兩門都及格為考試通過.假設(shè)某應(yīng)聘者對三門指定課程考試及格的概率分別是,且三門課程考試是否及格相互之間沒有影響.()分別求該應(yīng)聘者用方案一和方案二時考試通過的概率;()試比較該應(yīng)聘者在上述兩種方案下考試通過的概率的大小.(說明理由)6. 【2007高考北京理第18題】(本小題共13分) 123 10 20 30 4050參加人數(shù)活動次數(shù)某中學(xué)號召學(xué)生在今年春節(jié)期間至少參加一次社會公益活動(以下簡稱活動)該校合唱團(tuán)共有100名學(xué)生,他們參加活動的次數(shù)統(tǒng)計(jì)如圖所示(I)求合唱團(tuán)學(xué)生參加活動的人均次數(shù);(II)從合唱團(tuán)中任意選兩名學(xué)生,求他們參加活動次數(shù)恰好相等的概率(III)從合唱團(tuán)中任選兩名學(xué)生,用表示這兩人參加活動次數(shù)之差的絕對值,求隨機(jī)變量的分布列及數(shù)學(xué)期望7. 【2008高考北京理第17題】(本小題共13分)甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分到四個不同的崗位服務(wù),每個崗位至少有一名志愿者()求甲、乙兩人同時參加崗位服務(wù)的概率;()求甲、乙兩人不在同一個崗位服務(wù)的概率;()設(shè)隨機(jī)變量為這五名志愿者中參加崗位服務(wù)的人數(shù),求的分布列8. 【2009高考北京理第17題】(本小題共13分)某學(xué)生在上學(xué)路上要經(jīng)過4個路口,假設(shè)在各路口是否遇到紅燈是相互獨(dú)立的,遇到紅燈的概率都是,遇到紅燈時停留的時間都是2min.()求這名學(xué)生在上學(xué)路上到第三個路口時首次遇到紅燈的概率;()求這名學(xué)生在上學(xué)路上因遇到紅燈停留的總時間的分布列及期望.,w.w.w.zxxk.c.o.m 即的分布列是02468的期望是9. 【2010高考北京理第17題】(13分) 某同學(xué)參加3門課程的考試假設(shè)該同學(xué)第一門課程取得優(yōu)秀成績的概率為,第二、第三門課程取得優(yōu)秀成績的概率分別為p、q(pq),且不同課程是否取得優(yōu)秀成績相互獨(dú)立記為該生取得優(yōu)秀成績的課程數(shù),其分布列為0123Pab(1)求該生至少有1門課程取得優(yōu)秀成績的概率;(2)求p,q的值;(3)求數(shù)學(xué)期望E. 10. 【2011高考北京理第17題】以下莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù)。乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中以X表示。(1)如果,求乙組同學(xué)植樹棵數(shù)的平均數(shù)和方差;(2)如果,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)Y的分布列和數(shù)學(xué)期望。(注:方差,其中為,的平均數(shù))=1911. 【2012高考北京理第17題】(本小題共13分)近年來,某市為了促進(jìn)生活垃圾的風(fēng)分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)分垃圾箱,為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該市三類垃圾箱中總計(jì)1000噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):“廚余垃圾”箱“可回收物”箱“其他垃圾”箱廚余垃圾400100100可回收物3024030其他垃圾202060()試估計(jì)廚余垃圾投放正確的概率;()試估計(jì)生活垃圾投放錯誤額概率;()假設(shè)廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為其中a0,=600。當(dāng)數(shù)據(jù)的方差最大時,寫出的值(結(jié)論不要求證明),并求此時的值。(注:,其中為數(shù)據(jù)的平均數(shù))12. 【2013高考北京理第16題】(本小題共13分)下圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染某人隨機(jī)選擇3月1日至3月13日中的某一天到達(dá)該市,并停留2天(1)求此人到達(dá)當(dāng)日空氣重度污染的概率;(2)設(shè)X是此人停留期間空氣質(zhì)量優(yōu)良的天數(shù),求X的分布列與數(shù)學(xué)期望;(3)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)13. 【2014高考北京理第16題】(本小題滿分13分)李明在10場籃球比賽中的投籃情況統(tǒng)計(jì)如下(假設(shè)各場比賽相互獨(dú)立):場次投籃次數(shù)命中次數(shù)場次投籃次數(shù)命中次數(shù)主場12212客場1188主場21512客場21312主場3128客場3217主場4238客場41815主場52420客場52512(1)從上述比賽中隨機(jī)選擇一場,求李明在該場比賽中投籃命中率超過0.6的概率;(2)從上述比賽中隨機(jī)選擇一個主場和一個客場,求李明的投籃命中率一場超過0.6,一場不超過0.6的概率;(3)記為表中10個命中次數(shù)的平均數(shù),從上述比賽中隨機(jī)選擇一場,記為李明在這場比賽中的命中次數(shù),比較與的大?。ㄖ恍鑼懗鼋Y(jié)論)【答案】(1)0.5;(2);(3).考點(diǎn):概率的計(jì)算、數(shù)學(xué)期望,平均數(shù),互斥事件的概率.14. 【2015高考北京,理16】,兩組各有7位病人,他們服用某種藥物后的康復(fù)時間(單位:天)記錄如下:組:10,11,12,13,14,15,16組:12,13,15,16,17,14,假設(shè)所有病人的康復(fù)時間互相獨(dú)立,從,兩組隨機(jī)各選1人,組選出的人記為甲,組選出的人記為乙() 求甲的康復(fù)時間不少于14天的概率;() 如果,求甲的康復(fù)時間比乙的康復(fù)時間長的概率;() 當(dāng)為何值時,兩組病人康復(fù)時間的方差相等?(結(jié)論不要求證明)【答案】(1),(2),(3)或考點(diǎn):1、古典概型;2、樣本的方差