高考數(shù)學(xué)一輪復(fù)習(xí) 第9章 第56講 圓錐曲線的綜合應(yīng)用課件 理

上傳人:痛*** 文檔編號:66693001 上傳時(shí)間:2022-03-29 格式:PPT 頁數(shù):35 大?。?51.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
高考數(shù)學(xué)一輪復(fù)習(xí) 第9章 第56講 圓錐曲線的綜合應(yīng)用課件 理_第1頁
第1頁 / 共35頁
高考數(shù)學(xué)一輪復(fù)習(xí) 第9章 第56講 圓錐曲線的綜合應(yīng)用課件 理_第2頁
第2頁 / 共35頁
高考數(shù)學(xué)一輪復(fù)習(xí) 第9章 第56講 圓錐曲線的綜合應(yīng)用課件 理_第3頁
第3頁 / 共35頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)一輪復(fù)習(xí) 第9章 第56講 圓錐曲線的綜合應(yīng)用課件 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)一輪復(fù)習(xí) 第9章 第56講 圓錐曲線的綜合應(yīng)用課件 理(35頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、1,5222221.2115.2.2xyykxxttypxxy若直線與焦點(diǎn)在 軸上的橢圓恒有公共點(diǎn),則 的取值范圍是已知拋物線的準(zhǔn)線與雙曲線的左準(zhǔn)線重合,則拋物線的焦點(diǎn)坐標(biāo)為1,022222.21212.1,02xyabcabcxpp 雙曲線的實(shí)半軸、虛半軸、半焦距分別為 , , , 則,故其左準(zhǔn)線, 故,故焦點(diǎn)坐標(biāo)為解析:2222184xy2222102,04.3.xyCababFxC設(shè)橢圓 :相應(yīng)于焦點(diǎn)的準(zhǔn)線方程為,則橢圓 的方程是22222222222844184caacbabcxyC由題意得:,所以,所以橢圓 的方程為解析:22-=1412xy2264804.CxyxyC已知圓 :以圓

2、 與坐標(biāo)軸的交點(diǎn)分別作為雙曲線的一個(gè)焦點(diǎn)和頂點(diǎn),則適合上述條件的雙曲線的標(biāo)準(zhǔn)方程為 222222648006802,04,02412-=1412CxyxyyxxCacbxy圓 :, 令,得圓 與坐標(biāo)軸的交點(diǎn)分別為, 則,所以雙曲線的標(biāo)準(zhǔn)方程為解析:222211612xy222221(0)12.8.5xymnymnx設(shè)橢圓 的右焦點(diǎn)與拋物線的焦點(diǎn)相同,離心率為 ,則此橢圓的方程為2222222282,02124242121.1612yxxmmxyn拋物線的焦點(diǎn)為,所以橢圓焦點(diǎn)在 軸上且半焦距為 ,所以,所以,所以橢圓的方程解析:為最值與范圍最值與范圍 22901123121lxyPPxyP在直線

3、 : 上任取一點(diǎn) ,過點(diǎn)且以橢圓 的焦點(diǎn)為焦點(diǎn)作橢圓點(diǎn)在何處時(shí),所求橢圓的長軸最短?求長軸最短時(shí)的橢【例】圓方程 22121112212211(3,0)1233,090(9,6)230.90,(5,4)230(5,4)()226 53 536.45xyFFFxyFFFxyxyPxyPaPFPFabx橢圓 的兩個(gè)焦點(diǎn)為,易求得焦點(diǎn) 關(guān)于直線 對稱的點(diǎn)為,則過點(diǎn), 的直線方程為 聯(lián)立解得易證,過點(diǎn)的橢圓長軸最短 為什么?自己證明因?yàn)?,所?, 故所求橢圓【的方程為解析】2136y 本例通過平面幾何知識,利用橢圓的定義和對稱性找到長軸最短時(shí)的P點(diǎn),從而解決問題還可以有如下解法:設(shè)所求橢圓的方程為22

4、2222222901.,9190 xyxyyxxyaaaaaP 聯(lián)關(guān) ,進(jìn)點(diǎn)標(biāo)立消去 得于的一元二次方程令可求得 的值,而求得的坐 22222222222012121201212121(0)1(0)00.“”1112xyxabyxxbcabcabcFFFAABBxyF FFbA AB Ba我們把由半橢圓與半橢圓合成的曲線稱為 果圓 ,其中 ,、 、是相應(yīng)橢圓的焦點(diǎn), 、和 、分別是 果圓 與 、 軸的交點(diǎn)若三角形是邊長為 的等邊三角形【變式練習(xí),求 果圓的方程;若,求】的取值范圍; 22220122222201122222222222222222221,0(0)(0)()12137.4444“

5、”1(0)1(0)73222.42(2)5FcFbcFbcF FbccbFFbccabcxyxyxxacbabbabbbcaabbaabc因?yàn)?,所?, ,于是 , 故所求 果圓 的方程為 , 由題意,得 ,即由 ,即 ,得又解析】【2222212 4(,)225bbabaa ,所以,所以圓錐曲線的離心率圓錐曲線的離心率 222212121(00)2xyPababFFePFe PFe設(shè)點(diǎn) 是雙曲線,右支上的任意一點(diǎn), ,分別是其左、右焦點(diǎn),離心率為 ,若,求此雙曲線的離心率 的取【例 】值范圍121221121212222211()2122101121(1,12.PFPFaaaePFe PFP

6、FPFPFPFeeFFFPFa eceeeee 由雙曲線的第一定義可知:,又,故,當(dāng)且僅當(dāng)點(diǎn) , ,共線時(shí)取等號 ,即,所以 ,即,故所求雙曲線的離心率 的【取值范圍是解析】 圓錐曲線中的離心率反映了圓錐曲線的形狀,也反映了圓錐曲線上的點(diǎn)到焦點(diǎn)和到準(zhǔn)線的距離的關(guān)系,在實(shí)際問題中,常與第二定義聯(lián)系在一起 22221(0)6202xyabFabABAFFBe已知橢圓+,過左焦點(diǎn) 作傾斜角為的直線交橢圓于 , 兩點(diǎn),若,則橢圓的離心率 為_【變式練習(xí) 】_243423233BFBdAFAdeddde如圖,設(shè) ,點(diǎn) 到左準(zhǔn)線的距離為 ,則 ,點(diǎn) 到左準(zhǔn)線的距離 ,由圓錐曲線的統(tǒng)一定義得 ,則 ,故【】

7、解析23探究性問題探究性問題 222222261(0)3( 13)12().24034yxCababAlCABBClClABDxmxyymDm已知橢圓 : +的離心率為,過右頂點(diǎn) 的直線 與橢圓 相交于 、 兩點(diǎn),且 , 求橢圓【和直線 的方程;記橢圓 在直線 下方的部分與線段所圍成的平面區(qū)域 含邊界 為若曲線 與有公共點(diǎn),試求實(shí)數(shù) 的最小值例 】(2011南通一模卷) 2222222222222222661333.( 13)1( 3)( 1)11.124.11242,0( 13)2.abeaabyxBCabababyxCABlyx由離心率 ,得,即 又由點(diǎn) , 在橢圓 : + 上,得+ ,聯(lián)

8、立解得 , 故橢圓 的方程為+由, , ,得直線 的方程為 解析【】 2222222440()(2)8(2)2 2.22 20 xmxyymxmyG mrymm 曲線 ,即 ,其圓心坐標(biāo)為, ,半徑 易知它是圓心在直線 上,半徑為的動(dòng)圓由于要求實(shí)數(shù) 的最小值,故由圖可知,只需考慮的情形22min|22|2 24.24(42)60.60(24)201 2.( 1)(32)87 1.GlTmmmGllxyxyTxyDTDGBmmm設(shè)與直線 相切于點(diǎn) ,則由,得 當(dāng) 時(shí),過點(diǎn) , 與直線 垂直的直線的方程為 解方程組,得 , 因?yàn)閰^(qū)域 內(nèi)的點(diǎn)的橫坐標(biāo)的最小值與最大值分別為 ,所以切點(diǎn)由圖可知當(dāng)過點(diǎn)

9、時(shí), 取得最小值,即 ,得 本題考查了直線、橢圓、圓的方程及圓的切線等多個(gè)知識點(diǎn),雖然是以橢圓為背景,但重點(diǎn)考查的是直線與圓的知識,題目立意新穎,有較好的區(qū)分度 2222 2.=1910.123xOyCyxOxyCaCCQQFOFQ在平面直角坐標(biāo)系中,已知圓心在第二象限、半徑為的圓 與直線 相切于坐標(biāo)原點(diǎn)橢圓與圓 的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離【變式練習(xí)之和為求圓 的方程;試探究圓 上是否存在異于原點(diǎn)的點(diǎn) ,使點(diǎn)到橢圓的右焦點(diǎn) 的距離】等于線段的長?若存在,請求出點(diǎn) 的坐標(biāo);若不存在,請說明理由 2222221()(00)()()8.|=2 2|4.20,00,08.| 4228(mn mnCx

10、mynCyxCmnCmnCyxCmnmnmnmnCx 設(shè)圓心的坐標(biāo)為,則圓 的方程為 已知圓 與直線 相切,那么圓心 到該直線的距離等于圓 的半徑,則,即 又圓 與直線 切于原點(diǎn),故將原點(diǎn),代入圓 的方程中,得 聯(lián)立方程和組成方程組,解得故圓 的方【】程為解析222)(2)8.y 2222222222525=125944,04.4(4)1614(4)16512(2)(2)165xyaacOFQFOFFxyxxyxyy依題意知 ,所以 ,則橢圓的方程為,其半焦距 ,右焦點(diǎn)為,那么要探求是否存在異于原點(diǎn)的點(diǎn) ,使得該點(diǎn)到橢圓右焦點(diǎn)的距離等于,我們可以轉(zhuǎn)化為探求以右焦點(diǎn) 為圓心,半徑為 的圓 與所求

11、的圓的交點(diǎn)個(gè)數(shù) 通過聯(lián)立兩圓的方程,得,解得4 12( ,)55.QFOF故存在異于原點(diǎn)的點(diǎn),使得該點(diǎn)到橢圓右焦點(diǎn) 的距離等于2221 0121.xkyk若橢圓 的離心率為,則它的長軸長是_2 22 323或22.2.21CxyC 中心在原點(diǎn),對稱軸為坐標(biāo)軸的雙曲線 的兩條漸近線與圓都相切,則雙曲線 的離心率是2222|2 |2 313|2 |12.xyxbeabyyxaeab由題可知,當(dāng)雙曲線的焦點(diǎn)在 軸上時(shí),漸近線方程為, 由已知可知,解得; 當(dāng)雙曲線的焦點(diǎn)在 軸上時(shí),漸近線方程為,由已知可得,解得解析:22121212149.03xFFyPFPFFPF設(shè) 和為雙曲線 的兩個(gè)焦點(diǎn),點(diǎn)在雙曲

12、線上,且滿足,則的面積是_V1221222112222212121212121254|4216.90(2 5) .12.1.2xyacPFPFPFPF PFPFFPFPFPFPF PFS FPFPF PF由 ,得 , ,所以 ,則因?yàn)?,所以?lián)立【解解得 所】以析2243,02,013.12yAFxPPAPF已知點(diǎn)、,在雙曲線 上求一點(diǎn) ,使的值最小1322.2,0|12.2121,0abcePFdPFPFddPAPFPAdPPAPAP因?yàn)?, ,所以 ,所以 設(shè)點(diǎn) 到與焦點(diǎn)相應(yīng)的準(zhǔn)線的距離為 ,則 ,所以所以 ,這問題就轉(zhuǎn)化為在雙曲線上求點(diǎn) ,使 到定點(diǎn) 的距離與到準(zhǔn)線的距離和最小即直線垂直于

13、準(zhǔn)線時(shí)合【題意,所以解析】2214345.xymyxm是否存在實(shí)數(shù) ,使得橢圓 上有不同的兩點(diǎn)關(guān)于直線 對稱2211222200143()()4()431xyA xyA xyyxmxyM xyM設(shè)橢圓 上以,為端點(diǎn)的弦關(guān)于直線 對稱,其中【解析】點(diǎn)為,且是橢圓 內(nèi)的點(diǎn),120120221122221212221112120121200000000022 .34()3()33()34()41313444()43(3AAAAxxxyyyxyyyxxxyyyxxxkxxyyyxkyxyM xyyxmxmymMmm從而有 , 4 12 由,得4 12 所以由,由,在直線 上,則 , ,222)342

14、13 2 131(,)43131313mmmm ,從而有 1圓錐曲線的綜合問題包括解析法的應(yīng)用,數(shù)形結(jié)合的數(shù)學(xué)思想,與圓錐曲線相關(guān)的定值問題、最值問題、應(yīng)用問題和探索性問題圓錐曲線知識的縱向聯(lián)系,圓錐曲線知識與三角、函數(shù)等代數(shù)知識的橫向聯(lián)系,解綜合性問題的分析思路與方法重要的是要善于掌握圓錐曲線知識的縱向、橫向的聯(lián)系,努力提高解題能力 2與圓錐曲線有關(guān)的參數(shù)問題的討論常用的兩種方法: (1)不等式(組)求解法:依據(jù)題意,結(jié)合圖形,列出所討論的參數(shù)適合的不等式(組),通過解不等式(組)得出參數(shù)的變化范圍; (2)函數(shù)值域求解法:把所討論的參數(shù)作為一個(gè)函數(shù),通過討論函數(shù)的值域來求參數(shù)的變化范圍 3

15、圓錐曲線中最值的求解方法有兩種: (1)幾何法:若題目中的條件和結(jié)論能明顯體現(xiàn)幾何特征的意義,則考慮利用圖形性質(zhì)來解決; (2)代數(shù)法:若題目中的條件和結(jié)論能體現(xiàn)某一明確的函數(shù)關(guān)系,則可首先建立目標(biāo)函數(shù),再求這個(gè)函數(shù)的最值求函數(shù)最值常用的方法:配方法、判別式法、重要不等式法及函數(shù)的單調(diào)性法 4定點(diǎn)定值問題,所考查的數(shù)學(xué)思想主要是函數(shù)與方程思想、數(shù)形結(jié)合思想、等價(jià)化歸思想以及基本不等式的運(yùn)用等,并且基本上都是建立目標(biāo)函數(shù),通過目標(biāo)函數(shù)的各種性質(zhì)來解決問題關(guān)于定點(diǎn)定值問題,一般來說,從兩個(gè)方面來解決問題:(1)從特殊入手,求出定點(diǎn)(定值),再證明這個(gè)點(diǎn)(值)與變量無關(guān);(2)直接推理計(jì)算,并在計(jì)算過程中消去變量,從而得到定點(diǎn)(值)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!