《高中數(shù)學(xué) 精講優(yōu)練課型 第二章 基本初等函數(shù)(I)2.2.1 對(duì)數(shù)與對(duì)數(shù)運(yùn)算 第1課時(shí) 對(duì)數(shù)課件 新人教版必修1》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 精講優(yōu)練課型 第二章 基本初等函數(shù)(I)2.2.1 對(duì)數(shù)與對(duì)數(shù)運(yùn)算 第1課時(shí) 對(duì)數(shù)課件 新人教版必修1(38頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2.2對(duì)數(shù)函數(shù)2.2.1對(duì)數(shù)與對(duì)數(shù)運(yùn)算第1課時(shí)對(duì) 數(shù)【知識(shí)提煉【知識(shí)提煉】1.1.對(duì)數(shù)對(duì)數(shù)(1)(1)指數(shù)式與對(duì)數(shù)式的互化及有關(guān)概念指數(shù)式與對(duì)數(shù)式的互化及有關(guān)概念: :(2)(2)底數(shù)底數(shù)a a的范圍是的范圍是_._.對(duì)數(shù)對(duì)數(shù)冪冪真數(shù)真數(shù)底數(shù)底數(shù)a0a0且且a1a1指數(shù)指數(shù)2.2.常用對(duì)數(shù)與自然對(duì)數(shù)常用對(duì)數(shù)與自然對(duì)數(shù)3.3.對(duì)數(shù)的基本性質(zhì)對(duì)數(shù)的基本性質(zhì)(1)(1)負(fù)數(shù)和零負(fù)數(shù)和零_對(duì)數(shù)對(duì)數(shù). .(2)log(2)loga a1=_(a0,1=_(a0,且且a1).a1).(3)log(3)loga aa=_(a0,a=_(a0,且且a1).a1).1010e e沒(méi)有沒(méi)有0 01 1【即時(shí)小測(cè)【
2、即時(shí)小測(cè)】1.1.思考下列問(wèn)題思考下列問(wèn)題. .(1)(1)任何一個(gè)指數(shù)式都可以化成對(duì)數(shù)式嗎任何一個(gè)指數(shù)式都可以化成對(duì)數(shù)式嗎? ?提示提示: :不是不是, ,如如(-3)(-3)2 2=9,=9,不能寫為不能寫為loglog(-3)(-3)9=2.9=2.(2)log(2)loga a1=0(a0,1=0(a0,且且a1)a1)和和logloga aa a=1(a0,=1(a0,且且a1)a1)化為指數(shù)式是什么化為指數(shù)式是什么? ?提示提示: :logloga a1=01=0化成指數(shù)式為化成指數(shù)式為a a0 0=1(a0,=1(a0,且且a a1),log1),loga aa=1a=1化成指數(shù)
3、式為化成指數(shù)式為a a1 1=a(a=a(a0,0,且且a a1).1).2.2.若若a a2 2=M(a=M(a00且且a1),a1),則有則有( () )A.logA.log2 2M=aM=aB.logB.loga aM M=2=2C.logC.loga a2=M2=M D.log D.log2 2a=Ma=M【解析【解析】選選B.B.由對(duì)數(shù)的定義知由對(duì)數(shù)的定義知a a2 2=M=M化成對(duì)數(shù)式為化成對(duì)數(shù)式為logloga aM M=2.=2.3.3.使對(duì)數(shù)式使對(duì)數(shù)式logloga a(2a-1)(2a-1)有意義的有意義的a a的取值范圍為的取值范圍為( () )A.aA.a B.a B.
4、a00且且aaC.aC.a 且且a1a1 D.a D.a11【解析【解析】選選C.C.由對(duì)數(shù)的概念可知使對(duì)數(shù)式由對(duì)數(shù)的概念可知使對(duì)數(shù)式logloga a(2a-1)(2a-1)有意義的有意義的a a需需滿足滿足 解得解得a a 且且a a1.1.1212122a 1 0,a0 a 1, 且124.4.已知已知loglogx x25=2,25=2,則則x=x=. .【解析【解析】因?yàn)橐驗(yàn)閘oglogx x25=2,25=2,所以所以x x2 2=25,=25,又由于又由于x0 x0且且x x1,1,所以所以x=5.x=5.答案答案: :5 55.5.已知已知loglog3 3 =0,=0,則則x
5、=x=. .【解析【解析】因?yàn)橐驗(yàn)閘oglog3 3 =0,=0,所以所以 =1,=1,解得解得x=3.x=3.答案答案: :3 32x 152x 152x 15【知識(shí)探究【知識(shí)探究】知識(shí)點(diǎn)知識(shí)點(diǎn)1 1對(duì)數(shù)的有關(guān)概念對(duì)數(shù)的有關(guān)概念觀察如圖所示內(nèi)容觀察如圖所示內(nèi)容, ,回答下列問(wèn)題回答下列問(wèn)題: :問(wèn)題問(wèn)題1:1:在什么前提下對(duì)數(shù)式才有意義在什么前提下對(duì)數(shù)式才有意義? ?問(wèn)題問(wèn)題2:log2:loga aN=xN=x中的中的logloga aN N是否可以理解為是否可以理解為logloga a與與N N的乘積的乘積? ?【總結(jié)提升【總結(jié)提升】1.1.從三方面認(rèn)識(shí)對(duì)數(shù)式從三方面認(rèn)識(shí)對(duì)數(shù)式(1)(1
6、)對(duì)數(shù)式對(duì)數(shù)式logloga aN N可看作一種記號(hào)可看作一種記號(hào), ,只有在只有在a0,a1,N0a0,a1,N0時(shí)才有意義時(shí)才有意義. .(2)(2)對(duì)數(shù)式對(duì)數(shù)式logloga aN N也可以看作一種運(yùn)算也可以看作一種運(yùn)算, ,是在已知是在已知a ab b=N=N求求b b的前提下提出的前提下提出的的. .(3)log(3)loga aN N是一個(gè)數(shù)是一個(gè)數(shù), ,是一種取對(duì)數(shù)的運(yùn)算是一種取對(duì)數(shù)的運(yùn)算, ,結(jié)果仍是一個(gè)數(shù)結(jié)果仍是一個(gè)數(shù), ,不可分開(kāi)不可分開(kāi)書(shū)寫書(shū)寫, ,也不可認(rèn)為是也不可認(rèn)為是logloga a與與N N的乘積的乘積. .2.2.負(fù)數(shù)和零沒(méi)有對(duì)數(shù)的原因負(fù)數(shù)和零沒(méi)有對(duì)數(shù)的原因由
7、于當(dāng)由于當(dāng)a0a0且且a1a1時(shí)時(shí), ,對(duì)任意實(shí)數(shù)對(duì)任意實(shí)數(shù)x x總有總有a ax x0,0,因而因而a ax x=N=N中中N N總是正數(shù)總是正數(shù). .根根據(jù)據(jù)a ax x=N=Nx=logx=loga aN(aN(a00且且a1)a1)可知可知, ,在在logloga aN N=x=x中必須中必須N0,N0,也就是說(shuō)負(fù)也就是說(shuō)負(fù)數(shù)和零沒(méi)有對(duì)數(shù)數(shù)和零沒(méi)有對(duì)數(shù). .知識(shí)點(diǎn)知識(shí)點(diǎn)2 2對(duì)數(shù)的基本性質(zhì)及對(duì)數(shù)恒等式對(duì)數(shù)的基本性質(zhì)及對(duì)數(shù)恒等式觀察如圖所示內(nèi)容觀察如圖所示內(nèi)容, ,回答下列問(wèn)題回答下列問(wèn)題: :問(wèn)題問(wèn)題1:01:0和和1 1能否轉(zhuǎn)化為對(duì)數(shù)的形式能否轉(zhuǎn)化為對(duì)數(shù)的形式? ?問(wèn)題問(wèn)題2:2:對(duì)
8、數(shù)恒等式中的底數(shù)有何特點(diǎn)對(duì)數(shù)恒等式中的底數(shù)有何特點(diǎn)? ?【總結(jié)提升【總結(jié)提升】1.1.對(duì)數(shù)恒等式具有的特征對(duì)數(shù)恒等式具有的特征(1)(1)指數(shù)中含有對(duì)數(shù)形式指數(shù)中含有對(duì)數(shù)形式. .(2)(2)它們是同底的它們是同底的. .(3)(3)其值為對(duì)數(shù)的真數(shù)其值為對(duì)數(shù)的真數(shù). .2.log2.loga a1 1與與logloga aa(aa(a00且且a1)a1)的應(yīng)用的應(yīng)用logloga a1=01=0與與logloga aa a=1=1這兩個(gè)結(jié)論常?;@兩個(gè)結(jié)論常常化“簡(jiǎn)簡(jiǎn)”為為“繁繁”, ,把把0 0和和1 1化為對(duì)化為對(duì)數(shù)式的形式數(shù)式的形式, ,再根據(jù)對(duì)數(shù)的有關(guān)性質(zhì)求解問(wèn)題再根據(jù)對(duì)數(shù)的有關(guān)性質(zhì)
9、求解問(wèn)題. .【題型探究【題型探究】類型一類型一對(duì)數(shù)的概念對(duì)數(shù)的概念【典例【典例】1.1.如果如果a=ba=b3 3(b0,(b0,且且b1),b1),則有則有( () )A.logA.log3 3a=ba=bB.logB.log3 3b=ab=aC.logC.logb ba a=3=3 D.log D.logb b3=a3=a2.(20152.(2015臨汾高一檢測(cè)臨汾高一檢測(cè)) )在在M=logM=log(a-1)(a-1)(3-a)(3-a)中中, ,實(shí)數(shù)實(shí)數(shù)a a的取值范圍是的取值范圍是. .3.3.將下列指數(shù)式化為對(duì)數(shù)式將下列指數(shù)式化為對(duì)數(shù)式, ,對(duì)數(shù)式化為指數(shù)式對(duì)數(shù)式化為指數(shù)式.
10、.(1)3(1)3-2-2= .= .(2) =-2.(3)lg0.001=-3.(2) =-2.(3)lg0.001=-3.1913log 9【解題探究【解題探究】1.1.典例典例1 1中轉(zhuǎn)化為對(duì)數(shù)式時(shí)應(yīng)以哪個(gè)量作為底數(shù)中轉(zhuǎn)化為對(duì)數(shù)式時(shí)應(yīng)以哪個(gè)量作為底數(shù)? ?提示提示: :應(yīng)以應(yīng)以b b作為對(duì)數(shù)的底數(shù)作為對(duì)數(shù)的底數(shù). .2.2.典例典例2 2中對(duì)底數(shù)和真數(shù)有何要求中對(duì)底數(shù)和真數(shù)有何要求? ?提示提示: :應(yīng)滿足應(yīng)滿足3-a0,a-103-a0,a-10且且a-11.a-11.3.3.典例典例3 3中指數(shù)式與對(duì)數(shù)式的互化時(shí)應(yīng)把握的關(guān)鍵點(diǎn)是什么中指數(shù)式與對(duì)數(shù)式的互化時(shí)應(yīng)把握的關(guān)鍵點(diǎn)是什么? ?提
11、示提示: :若是指數(shù)式化為對(duì)數(shù)式若是指數(shù)式化為對(duì)數(shù)式, ,關(guān)鍵是看清指數(shù)是幾關(guān)鍵是看清指數(shù)是幾, ,再寫成對(duì)數(shù)式再寫成對(duì)數(shù)式; ;若若是對(duì)數(shù)式化為指數(shù)式是對(duì)數(shù)式化為指數(shù)式, ,則要看清真數(shù)是幾則要看清真數(shù)是幾, ,再寫成冪的形式再寫成冪的形式. .【解析【解析】1.1.選選C.C.由由a=ba=b3 3化成對(duì)數(shù)式為化成對(duì)數(shù)式為loglogb ba a=3.=3.2.2.由題意可得由題意可得 解得解得1a31a0,x+102x-30,x+10且且x+1x+11.1.3.3.典例典例(3)(3)中化簡(jiǎn)此等式可根據(jù)對(duì)數(shù)的哪些性質(zhì)中化簡(jiǎn)此等式可根據(jù)對(duì)數(shù)的哪些性質(zhì)? ?提示提示: :可利用可利用logl
12、oga a1=0,log1=0,loga aa=1.a=1.6log 5x 16【解析【解析】(1)(1)由由 =36=36得得,5x+1=36,5x+1=36,解得解得x=7.x=7.(2)(2)由由loglog(x+1)(x+1)(2x-3)=1(2x-3)=1可得可得 解得解得x=4.x=4.(3)(3)由由loglog3 3(log(log4 4(log(log5 5x)=0 x)=0可得可得loglog4 4(log(log5 5x)=1,x)=1,故故loglog5 5x=4,x=4,所以所以x=5x=54 4=625.=625.6log 5x 16x 1 2x 3,2x 3 0,
13、x 1 0,x 1 1. 【延伸探究【延伸探究】1.(1.(變換條件變換條件) )典例典例(3)(3)中若將中若將“l(fā)oglog3 3(log(log4 4(log(log5 5x)=0”x)=0”改為改為“l(fā)oglog3 3(log(log4 4(log(log5 5x)=1”,x)=1”,又如何求解又如何求解x x呢呢? ?【解析【解析】由由loglog3 3(log(log4 4(log(log5 5x)=1x)=1可得可得,log,log4 4(log(log5 5x)=3,x)=3,則則loglog5 5x=4x=43 3=64,=64,所以所以x=5x=56464. .2.(2.(
14、變換條件變換條件) )典例典例(3)(3)中若將中若將“l(fā)oglog3 3(log(log4 4(log(log5 5x)=0”x)=0”改為改為“ “ =1”,=1”,又如何求解又如何求解x x呢呢? ?【解析【解析】由由 =1=1可得可得loglog4 4(log(log5 5x)=1,x)=1,故故loglog5 5x=4,x=4,所以所以x=5x=54 4=625.=625.345log log log x3345log log log x3【方法技巧【方法技巧】對(duì)數(shù)恒等式對(duì)數(shù)恒等式 =N=N的應(yīng)用的應(yīng)用(1)(1)能直接應(yīng)用對(duì)數(shù)恒等式的直接求值即可能直接應(yīng)用對(duì)數(shù)恒等式的直接求值即可.
15、 .(2)(2)對(duì)于不能直接應(yīng)用對(duì)數(shù)恒等式的情況按以下步驟求解對(duì)于不能直接應(yīng)用對(duì)數(shù)恒等式的情況按以下步驟求解. .alog Na【補(bǔ)償訓(xùn)練【補(bǔ)償訓(xùn)練】求求 的值的值. .【解析【解析】【延伸探究【延伸探究】若將若將“ ”“ ”改為改為“ ”“ ”,又如何求值呢?又如何求值呢?【解析【解析】55log 6 log 955555log 6log 6 log 9log 95625.59355log 6 log 9555log 6 log 955555log 6 log 9log 6log 95556 9 54. 易錯(cuò)案例易錯(cuò)案例 對(duì)數(shù)式中參數(shù)的求解對(duì)數(shù)式中參數(shù)的求解【典例【典例】(2015(2015
16、滄州高一檢測(cè)滄州高一檢測(cè)) )對(duì)數(shù)式對(duì)數(shù)式M=logM=log(a-3)(a-3)(10-2a)(10-2a)中中, ,實(shí)數(shù)實(shí)數(shù)a a的取值范圍是的取值范圍是( )( )A.(-,5)A.(-,5)B.(3,5)B.(3,5)C.(3,+)C.(3,+) D.(3,4)(4,5) D.(3,4)(4,5)【失誤案例【失誤案例】【錯(cuò)解分析【錯(cuò)解分析】分析解題過(guò)程分析解題過(guò)程, ,你知道錯(cuò)在哪里嗎你知道錯(cuò)在哪里嗎? ?提示提示: :錯(cuò)誤的根本原因是沒(méi)有把握好對(duì)數(shù)式本身特殊的有意義的條件錯(cuò)誤的根本原因是沒(méi)有把握好對(duì)數(shù)式本身特殊的有意義的條件, ,只注意了真數(shù)大于零只注意了真數(shù)大于零, ,即即10-2a010-2a0而忽視了底數(shù)不僅要大于零而且不能而忽視了底數(shù)不僅要大于零而且不能等于等于1 1這一條件這一條件, ,從而解出從而解出a5a5造成誤選造成誤選A.A.【自我矯正【自我矯正】選選D.D.由題意由題意, ,得得 所以所以3a43a4或或4a5,4a0a-30且且a-31a-31要同時(shí)成立要同時(shí)成立. .2.2.注重不等式組的求解注重不等式組的求解在求解不等式組時(shí)在求解不等式組時(shí), ,要注意各個(gè)條件的限定及不等式的求解要注意各個(gè)條件的限定及不等式的求解, ,如本例中如本例中a-31,a-31,分為分為a4a4a4兩種情況兩種情況. .