《精修版高中數(shù)學 第2章 第8課時 空間中直線與直線之間的位置關(guān)系課時作業(yè) 人教A版必修2》由會員分享,可在線閱讀,更多相關(guān)《精修版高中數(shù)學 第2章 第8課時 空間中直線與直線之間的位置關(guān)系課時作業(yè) 人教A版必修2(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理
課時作業(yè)(八) 空間中直線與直線之間的位置關(guān)系
A組 基礎(chǔ)鞏固
1.長方體的一條體對角線與長方體的棱所組成的異面直線有( )
A.2對 B.3對
C.6對 D.12對
解析:
如圖所示,在長方體AC1中,與對角線AC1成異面直線位置關(guān)系的是:
A1D1、BC、BB1、DD1、A1B1、DC,所以組成6對異面直線.
答案:C
2.已知異面直線a與b滿足a?α,b?β,且α∩β=c,則c與a,b的位置關(guān)系一定是( )
A.c與a,b都相交
B.c至少與a,b中的一條相交
2、
C.c至多與a,b中的一條相交
D.c至少與a,b中的一條平行
解析:∵a?α,c?α,
∴a與c相交或平行.
同理,b與c相交或平行.
若c∥a,c∥b,則a∥b,這與a,b異面矛盾.
∴a,b不能都與c平行,即直線a,b中至少有一條與c相交.
答案:B
3.下面四種說法:
①若直線a、b異面,b、c異面,則a、c異面;
②若直線a、b相交,b、c相交,則a、c相交;
③若a∥b,則a、b與c所成的角相等;
④若a⊥b,b⊥c,則a∥c,其中正確的個數(shù)是( )
A.4 B.3
C.2 D.1
解析:若a、b異面,b、c異面,則a、c相交、平行、異面均有可
3、能,故①不對.若a、b相交,b、c相交,則a、c相交、平行、異面均有可能,故②不對.若a⊥b,b⊥c,則a、c平行、相交、異面均有可能,故④不對.③正確.
答案:D
4.在正方體ABCD-A1B1C1D1中,點P在線段AD1上運動,則異面直線CP與BA1所成的角θ的取值范圍是( )
A.0<θ≤ B.0<θ≤
C.0≤θ≤ D.0<θ<
解析:由于CD1∥BA1,CP與BA1所成的角就是CP與CD1所成的角θ為∠D1CP,當點P從D1向A運動時,∠D1CP從0增大到,則異面直線CP與BA1所成的角θ的取值范圍是0<θ≤.
答案:A
5.如圖,三棱柱ABC-A1B1C1中
4、,底面三角形A1B1C1是正三角形,E是BC的中點,則下列敘述正確的是( )
A.CC1與B1E是異面直線
B.C1C與AE共面
C.AE,B1C1是異面直線
D.AE與B1C1所成的角為60°
解析:由于CC1與B1E都在平面C1B1BC內(nèi),故C1C與B1E是共面的,所以A錯誤;由于C1C在平面C1B1BC內(nèi),而AE與平面C1B1BC相交于E點,點E不在C1C上,故C1C與AE是異面直線,B錯誤;同理AE與B1C1是異面直線,C正確;而AE與B1C1所成的角就是AE與BC所成的角,E為BC中點,△ABC為正三角形,所以AE⊥BC,D錯誤.綜上所述,故選C.
答案:C
6.
5、一個正方體紙盒展開后如圖所示,在原正方體紙盒中有如下結(jié)論:
①AB⊥EF;②AB與CM所成的角為60°;③EF與MN是異面直線;④MN∥CD.
以上結(jié)論中正確的為( )
A.①② B.③④
C.②③ D.①③
解析:根據(jù)正方體平面展開圖還原出原來的正方體,如圖所示,由圖可知AB⊥EF,AB∥CM,EF與MN是異面直線,MN⊥CD,只有①③正確.
答案:D
7.如圖,在長方體ABCD-A1B1C1D1中,AB=AA1=2,AD=1,E為CC1的中點,則異面直線BC1與AE所成角的余弦值為( )
A. B.
C. D.
解析:本題考查兩條異面直線所成的角.連
6、接AD1,D1E,因為AD1∥BC1,所以∠D1AE是異面直線BC1與AE所成的角.在△D1AE中,可以求得AD1=,AE=,D1E=,所以△D1AE為等腰三角形,從而求得∠D1AE的余弦值為,故選B.
答案:B
8.已知a,b,c是空間中的三條直線,a∥b,且a與c的夾角為θ,則b與c的夾角為________.
解析:本題考查空間中直線的夾角問題.因為a∥b,所以a,b與c的夾角相等.因為a與c的夾角為θ,所以b與c的夾角也為θ.
答案:θ
9.如圖,已知正三棱柱ABC-A1B1C1的各條棱長都相等,M是側(cè)棱CC1的中點,求異面直線AB1和BM所成的角為________.(正三棱柱
7、是指底面為正三角形且側(cè)棱與底面垂直的三棱柱)
解析:
如圖,取BB1的中點N,AB的中點D,連接C1N,C1D,ND,因為ND∥AB1,BM∥C1N,所以∠C1ND即為所求的角.設(shè)棱長為2,則可求得ND=AB1=,C1N=,C1D=,在△C1ND中,C1N2+ND2=C1D2,故∠C1ND=90°,即異面直線AB1和BM所成的角為90°.
答案:90°
10.如圖,△ABC和△A′B′C′的對應頂點的連線AA′,BB′,CC′交于同一點O,且===.
(1)求證:A′B′∥AB,A′C′∥AC,B′C′∥BC;
(2)求的值.
解析:(1)證明:∵AA′∩BB′=O,
8、且==,
∴AB∥A′B′,
同理AC∥A′C′,BC∥B′C′.
(2)∵A′B′∥AB,A′C′∥AC且AB和A′B′、AC和A′C′方向相反,
∴∠BAC=∠B′A′C′.
同理∠ABC=∠A′B′C′,∠ACB=∠A′C′B′,
∴△ABC∽△A′B′C′,
且==,
∴=2=.
B組 能力提升
11.如圖,設(shè)E,F(xiàn),G,H分別是四面體A-BCD的棱AB,BC,CD,DA上的點,且==λ,==μ,求證:
(1)當λ=μ時,四邊形EFGH是平行四邊形;
(2)當λ≠μ時,四邊形EFGH是梯形.
證明:在△ABD中,∵==λ,
∴EH∥BD,且EH=λB
9、D.在△CBD中,
∵==μ,
∴FG∥BD,且FG=μBD.于是EH∥FG.
故頂點E,F(xiàn),G,H在由EH和FG確定的平面內(nèi).
(1)當λ=μ時,EH=FG,故四邊形EFGH為平行四邊形;
(2)當λ≠μ時,EH≠FG,故四邊形EFGH是梯形.
12.在梯形ABCD中,AB∥CD,E,F(xiàn)分別為BC和AD的中點,將平面CDFE沿EF翻折起來,使CD到C′D′的位置,G,H分別為AD′和BC′的中點,求證:四邊形EFGH為平行四邊形.
證明:如圖(1)所示,在梯形ABCD中,AB∥CD,E,F(xiàn)分別為BC,AD的中點,∴EF∥AB∥CD且EF=(AB+CD).
圖(1)
―→圖(2)
在圖(2)中,易知C′D′∥AB.
∵G,H分別為AD′,BC′的中點,
∴GH∥AB且GH=(AB+C′D′)=(AB+CD).
∴GH綊EF.
∴四邊形EFGH為平行四邊形.
最新精品資料