歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)

2022年高考數(shù)學(xué)三輪沖刺

2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練11已知定義在R上的函數(shù)滿(mǎn)足。則的取值范圍為 A B C D 2動(dòng)點(diǎn)在函數(shù)的圖象上移動(dòng)。2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練21已知函數(shù)。則A1 B C D 2已知等差數(shù)列。則函數(shù)的表達(dá)式為 A B C D2定義在上的偶函數(shù)滿(mǎn)足。

2022年高考數(shù)學(xué)三輪沖刺Tag內(nèi)容描述:

1、2022年高考數(shù)學(xué)三輪沖刺 平面向量課時(shí)提升訓(xùn)練41已知平面向量,1,2,2,則2的值是2A,B,C是圓O上的三點(diǎn),AOB120,CO的延長(zhǎng)線(xiàn)與線(xiàn)段AB交于點(diǎn)D,若m,nR,則mn的取值范圍是3已知點(diǎn)為等邊三角形的中心,直線(xiàn)過(guò)點(diǎn)交邊于點(diǎn),交。

2、2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練11已知定義在R上的函數(shù)滿(mǎn)足:當(dāng)時(shí),對(duì)于任意的實(shí)數(shù)均有.則 2定義域?yàn)镽的函數(shù)的值域?yàn)?則mn 3已知定義在R上的函數(shù) 4已知定義在R上的奇函數(shù),且在區(qū)間上是增函數(shù),若方程 5若函數(shù)的定義域。

3、2022年高考數(shù)學(xué)三輪沖刺 三角函數(shù)課時(shí)提升訓(xùn)練11A B C D2函數(shù)是 A周期為的偶函數(shù) B周期為2的偶函數(shù) C周期為的奇函數(shù) D周期為2的奇函數(shù)3設(shè),則有 AObc BObc COc6 D6cO 4已知的值為 A. B. C. D.5。

4、2022年高考數(shù)學(xué)三輪沖刺 平面向量課時(shí)提升訓(xùn)練31已知點(diǎn),若為雙曲線(xiàn)的右焦點(diǎn),是該雙曲線(xiàn)上且在第一象限的動(dòng)點(diǎn),則的取值范圍為 A B C D 2動(dòng)點(diǎn)在函數(shù)的圖象上移動(dòng),動(dòng)點(diǎn)滿(mǎn)足,則動(dòng)點(diǎn)的軌跡方程為A BC D 3平面上不共線(xiàn)的4個(gè)點(diǎn)A,B。

5、2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練53已知函數(shù)fxx221k1nxkN存在極值,則k的取值集合是 A2,4,6,8, Bo,2,4,6,8,Cl,3,5,7, DN4已知函數(shù)對(duì)任意都有,若的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),且,則A2 B3。

6、2022年高考數(shù)學(xué)三輪沖刺 基本初等函數(shù)課時(shí)提升訓(xùn)練11已知函數(shù)在區(qū)間上是減函數(shù),則的最小值是.4已知函數(shù)的圖像過(guò)點(diǎn)2,1,的反函數(shù)為,則的值域?yàn)? 5若實(shí)數(shù)滿(mǎn)足,且,則的值為 . 6如果函數(shù)在定義域的某個(gè)子區(qū)間上不存在反函數(shù),則的取值范圍。

7、2022年高考數(shù)學(xué)三輪沖刺 基本初等函數(shù)課時(shí)提升訓(xùn)練51對(duì)于函數(shù)與,若區(qū)間上的最大值稱(chēng)為與的絕對(duì)差,則在上的絕對(duì)差為A B C. D2方程的解 4給出下列命題:在區(qū)間上,函數(shù),中有三個(gè)是增函數(shù);若,則;若函數(shù)是奇函數(shù),則的圖象關(guān)于點(diǎn)對(duì)稱(chēng);已。

8、2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練81已知函數(shù),則對(duì)任意,若,下列不等式成立的是A BC D 2已知,則為 A奇函數(shù) B偶函數(shù) C非奇非偶函數(shù) D奇偶性與有關(guān) 3前12個(gè)正整數(shù)組成一個(gè)集合,此集合的符合如下條件的子集的數(shù)目為。

9、2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練121設(shè)定義域?yàn)榈暮瘮?shù)若關(guān)于的方程有7個(gè)不同的實(shí)數(shù)解,則 A6 B4或6 C2 D6或22定義區(qū)間,的長(zhǎng)度均為,多個(gè)區(qū)間并集的長(zhǎng)度為各區(qū)間長(zhǎng)度之和,例如, 的長(zhǎng)度. 用表示不超過(guò)的最大整數(shù)。

10、2022年高考數(shù)學(xué)三輪沖刺 三角函數(shù)課時(shí)提升訓(xùn)練31已知函數(shù)的定義域?yàn)?若其值域也為,則稱(chēng)區(qū)間為的保值區(qū)間若的保值區(qū)間是 ,則的值為 A1 B C D 2設(shè)是定義在上的偶函數(shù),且滿(mǎn)足,當(dāng)時(shí),又,若方程恰有兩解,則的范圍是 . . . . 3。

11、2022年高考數(shù)學(xué)三輪沖刺 三角函數(shù)課時(shí)提升訓(xùn)練21如圖所示,M,N是函數(shù)y2sinwx0圖像與x軸的交點(diǎn),點(diǎn)P在M,N之間的圖像上運(yùn)動(dòng),當(dāng)MPN面積最大時(shí)0,則 A B CD82若對(duì)任意實(shí)數(shù)都有,且,則實(shí)數(shù)的值等于 A B C3或1 D1。

12、2022年高考數(shù)學(xué)三輪沖刺 平面向量課時(shí)提升訓(xùn)練51已知點(diǎn)為的外心,且,則等于A. B. C. D. 2平面直向坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)A3,1 B1,3若點(diǎn)C滿(mǎn)足,其中 R且1,則點(diǎn)C的軌跡方程為 . A B3x2y110 C.2。

13、2022年高考數(shù)學(xué)三輪沖刺 專(zhuān)題12 空間幾何體的三視圖表面積及體積專(zhuān)項(xiàng)講解與訓(xùn)練一個(gè)物體的三視圖的排列規(guī)則俯視圖放在正主視圖的下面,長(zhǎng)度與正主視圖的長(zhǎng)度一樣,側(cè)左視圖放在正主視圖的右面,高度與正主視圖的高度一樣,寬度與俯視圖的寬度一樣即長(zhǎng)。

14、2022年高考數(shù)學(xué)三輪沖刺 精典專(zhuān)題強(qiáng)化練習(xí) 函數(shù)與方程練習(xí)卷 理1. 函數(shù)f xln xx38的零點(diǎn)所在的區(qū)間為 A 0,1 B 1,2 C 2,3 D 3,4答案B2.函數(shù)的零點(diǎn)個(gè)數(shù)為 A. 3 B. 2 C. 1 D. 0答案B3函數(shù)。

15、2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練21已知函數(shù),若,且,則的取值范圍為 .2設(shè)集合Ax,yyx2,x0,Bx,yyxb,AB. 1求b的取值范圍; 2若x,yAB,且x2y的最大值為9,求b的值3設(shè)1若不等式的解集為,求a的。

16、2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練77設(shè)函數(shù)fxax3bx2cx2的導(dǎo)函數(shù)為fx,如果fx為偶函數(shù),則一定有Aa0,c0Ba0,c0Cb0Db0,c010設(shè)函數(shù)fx的定義域?yàn)镽,若存在與x無(wú)關(guān)的正常數(shù)M,使fxMx對(duì)一切實(shí)數(shù)。

17、2022年高考數(shù)學(xué)三輪沖刺 數(shù)列課時(shí)提升訓(xùn)練41設(shè)是正項(xiàng)數(shù)列,其前項(xiàng)和滿(mǎn)足,則數(shù)列的通項(xiàng)公式.2下列說(shuō)法:當(dāng);ABC中,是成立的充要條件;函數(shù)的圖象可以由函數(shù)其中平移得到;已知是等差數(shù)列的前項(xiàng)和,若,則.函數(shù)與函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng).其中正。

18、2022年高考數(shù)學(xué)三輪沖刺 解三角形課時(shí)提升訓(xùn)練11已知三個(gè)內(nèi)角A,B,C所對(duì)的邊,若且的面積,則三角形的形狀是 A等腰三角形 B等邊三角形 C等腰直角三角形 D有一個(gè)為的等腰三角形2在中,分別是角所對(duì)邊的邊長(zhǎng),若,則的值是 ABCD3在A。

19、2022年高考數(shù)學(xué)三輪沖刺 數(shù)列課時(shí)提升訓(xùn)練31已知數(shù)列為等差數(shù)列,為等比數(shù)列,且滿(mǎn)足,則A1 B C D 2已知等差數(shù)列,首項(xiàng),則使數(shù)列的前n項(xiàng)和成立的最大正整數(shù)n是 A2011 Bxx C4023 D40223xx年高考湖北理定義在上的。

20、2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練131已知集合,若集合,且對(duì)任意的,存在,使得其中,則稱(chēng)集合為集合的一個(gè)元基底.分別判斷下列集合是否為集合的一個(gè)二元基底,并說(shuō)明理由;,若集合是集合的一個(gè)元基底,證明,若集合為集合的一個(gè)元基。

21、2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練93設(shè)集合A1,2,集合B1,2,3,分別從集合A和B中隨機(jī)取一個(gè)數(shù),確定平面上一個(gè)點(diǎn),記點(diǎn)落在直線(xiàn)上為事件,若事件的概率最大,則的所有可能值為 A3 B4 C2和5 D3和44對(duì)于非空集合。

22、2022年高考數(shù)學(xué)三輪沖刺 三角函數(shù)課時(shí)提升訓(xùn)練7評(píng)卷人得分一選擇題每空 分,共 分1函數(shù)yAsinA0, 的部分圖象如圖所示,則函數(shù)的表達(dá)式為 A B C D2定義在上的偶函數(shù)滿(mǎn)足,且在上是減函數(shù),是鈍角三角形的兩個(gè)銳角,則下列結(jié)論正確的。

23、2022年高考數(shù)學(xué)三輪沖刺 基本初等函數(shù)課時(shí)提升訓(xùn)練21若,則 ;4設(shè)為非零實(shí)數(shù),偶函數(shù)在區(qū)間上存在唯一零點(diǎn),則實(shí)數(shù)的取值范圍是 . 5已知三數(shù)xlog272,xlog92,xlog32成等比數(shù)列,則公比為 7函數(shù)的定義域?yàn)?若滿(mǎn)足在內(nèi)是單。

24、2022年高考數(shù)學(xué)三輪沖刺 數(shù)列課時(shí)提升訓(xùn)練21已知各項(xiàng)均不為零的數(shù)列an,定義向量.下列命題中真命題是 A若nN總有成立,則數(shù)列an是等差數(shù)列 B若nN總有成立,則數(shù)列an是等比數(shù)列 C若nN總有成立,則數(shù)列an是等差數(shù)列 D若nN總有成。

25、2022年高考數(shù)學(xué)三輪沖刺 平面向量課時(shí)提升訓(xùn)練21在中,已知,P為線(xiàn)段AB上的一點(diǎn),且,則的最小值為 A B C D2在邊長(zhǎng)為1的正三角形中,且,則的最大值為 A B C D3已知平面上不重合的四點(diǎn),滿(mǎn)足,且,那么實(shí)數(shù)的值為A B C D。

26、2022年高考數(shù)學(xué)三輪沖刺 三角函數(shù)課時(shí)提升訓(xùn)練51下列命題錯(cuò)誤的是 A若則; B點(diǎn)為函數(shù)的圖象的一個(gè)對(duì)稱(chēng)中心; C已知向量與向量的夾角為,若,則在上的投影為; D的充要條件是,或2已知函數(shù)的圖象與直線(xiàn)ym有三個(gè)交點(diǎn)的橫坐標(biāo)分別為的值是 A。

27、2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練42定義平面向量之間的一種運(yùn)算如下:對(duì)任意的am,n,bp,q,令ab mqnp,下面說(shuō)法錯(cuò)誤的是 A若a與b共線(xiàn),則ab 0 Bab ba C對(duì)任意的R,有ab ab Dab2ab2 a2。

28、2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練31已知集合M,集合N,則 A B C D2對(duì)于數(shù)集A,B,定義ABxxab,aA,bB, ABxx,若集合A1,2,則集 合AAA中所有元素之和為 A B C D3 已知函數(shù)fxx2bxc。

29、2022年高考數(shù)學(xué)三輪沖刺 專(zhuān)題13 空間點(diǎn)線(xiàn)面的位置關(guān)系專(zhuān)項(xiàng)講解與訓(xùn)練空間線(xiàn)面位置關(guān)系判斷的常用方法1根據(jù)空間線(xiàn)面平行垂直關(guān)系的判定定理和性質(zhì)定理逐項(xiàng)判斷來(lái)解決問(wèn)題;2必要時(shí)可以借助空間幾何模型,如從長(zhǎng)方體四面體等模型中觀察線(xiàn)面位置關(guān)系。

30、2022年高考數(shù)學(xué)三輪沖刺 專(zhuān)題 函數(shù)不等式恒成立問(wèn)題練習(xí)題理1. 已知函數(shù),若函數(shù)有3個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是 2.已知 且, , ,若對(duì)任意實(shí)數(shù)均有,則的最小值為3.當(dāng)實(shí)數(shù)x,y滿(mǎn)足時(shí),axy4恒成立,則實(shí)數(shù)a的取值范圍是4.已知正實(shí)。

31、2022年高考數(shù)學(xué)三輪沖刺 專(zhuān)題 函數(shù)數(shù)列三角函數(shù)中大小比較問(wèn)題練習(xí)題理1.若不等式對(duì)任意的正整數(shù)n恒成立,則實(shí)數(shù)的取值范圍是2.已知函數(shù)若不等式恒成立,則實(shí)數(shù)的取值范圍是.3.已知函數(shù)在區(qū)間上是增函數(shù),則下列結(jié)論正確的是將所有符合題意的序。

32、2022年高考數(shù)學(xué)三輪沖刺 專(zhuān)題 數(shù)列與不等式練習(xí)題理1.若等差數(shù)列的前5項(xiàng)和為25,則2若,則的最大值為3已知實(shí)數(shù)滿(mǎn)足,則的最小值為 4在圓x2y25x內(nèi),過(guò)點(diǎn)有n條弦的長(zhǎng)度成等差數(shù)列,最短弦長(zhǎng)為數(shù)列的首項(xiàng)a1,最長(zhǎng)弦長(zhǎng)為an,若公差,那。

33、2022年高考數(shù)學(xué)三輪沖刺 專(zhuān)題 圓錐曲線(xiàn)幾何性質(zhì)的應(yīng)用練習(xí)題理1.已知雙曲線(xiàn)的焦點(diǎn)為, , 為雙曲線(xiàn)上的一點(diǎn)且的內(nèi)切圓半徑為1,則的面積為.2.點(diǎn)為雙曲線(xiàn)右支上的一點(diǎn),其右焦點(diǎn)為,若直線(xiàn)的斜率為,為線(xiàn)段的中點(diǎn),且,則該雙曲線(xiàn)的離心率為3。

34、2022年高考數(shù)學(xué)三輪沖刺 精典專(zhuān)題強(qiáng)化練習(xí) 函數(shù)的概念練習(xí)卷 理1.已知函數(shù),那么的定義域是 A B C D答案B2.若函數(shù)的定義域?yàn)?則函數(shù)的定義域?yàn)?A. B. C. D. 答案C3.設(shè)函數(shù),則不等式的解集是A. B. C. D. 答。

35、2022年高考數(shù)學(xué)三輪沖刺 專(zhuān)題 待定系數(shù)法的應(yīng)用練習(xí)題理1.以點(diǎn)為圓心的圓與直線(xiàn)相切于點(diǎn),則該圓的方程為2.已知數(shù)列是公差不為0的等差數(shù)列,稱(chēng)等比數(shù)列,且, 3.已知拋物線(xiàn): 的焦點(diǎn)也是橢圓: 的一個(gè)焦點(diǎn),點(diǎn), 分別為曲線(xiàn), 上的點(diǎn),則的。

36、2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練102二次函數(shù)的圖象開(kāi)口向下,對(duì)稱(chēng)軸,圖象與x軸的兩個(gè)交點(diǎn)中,一個(gè)交點(diǎn)的橫坐標(biāo),則有 A B C D3設(shè)奇函數(shù)在上是增函數(shù),且,則不等式的解集為 A B C D 6函數(shù)fx的零點(diǎn)所在的大致區(qū)。

37、2022年高考數(shù)學(xué)三輪沖刺 專(zhuān)題 解析幾何練習(xí)題理1.圓心在直線(xiàn),且與直線(xiàn)相切于點(diǎn)的圓的標(biāo)準(zhǔn)方程為.2若雙曲線(xiàn) 的左右焦點(diǎn)分別為,點(diǎn)在雙曲線(xiàn)上,且,則 等于.3已知雙曲線(xiàn)與橢圓的焦點(diǎn)相同,如果是雙曲線(xiàn)的一條漸近線(xiàn),那么雙曲線(xiàn)的方程為.4已知。

38、2022年高考數(shù)學(xué)三輪沖刺 考點(diǎn)分類(lèi)解析練習(xí)卷 函數(shù)理1記函數(shù),若曲線(xiàn)上存在點(diǎn)使得,則a的取值范圍是 A. B. C. D. 2已知函數(shù)與的圖象上存在關(guān)于軸對(duì)稱(chēng)的點(diǎn),則的取值范圍是 A. B. C. D. 3已知函數(shù),且對(duì)任意實(shí)數(shù),均有,若。

39、2022年高考數(shù)學(xué)三輪沖刺 精典專(zhuān)題強(qiáng)化練習(xí) 函數(shù)的性質(zhì)單調(diào)性奇偶性周期性理練習(xí)卷 理1若函數(shù)在區(qū)間上不是單調(diào)函數(shù),則實(shí)數(shù)的取值范圍是 A. B. C. D. 答案B2若對(duì)任意的xR,y均有意義,則函數(shù)yloga的大致圖象是A. B. C。

40、2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練111對(duì)于定義在區(qū)間D上的函數(shù),若存在閉區(qū)間和常數(shù),使得對(duì)任意,都有,且對(duì)任意D,當(dāng)時(shí),恒成立,則稱(chēng)函數(shù)為區(qū)間D上的平底型函數(shù) 1判斷函數(shù)和是否為R上的平底型函數(shù)并說(shuō)明理由;2設(shè)是1中的平底。

【2022年高考數(shù)學(xué)三輪沖刺】相關(guān)DOC文檔
2022年高考數(shù)學(xué)三輪沖刺 專(zhuān)題 解析幾何練習(xí)題理
2022年高考數(shù)學(xué)三輪沖刺 考點(diǎn)分類(lèi)解析練習(xí)卷 函數(shù)理
2022年高考數(shù)學(xué)三輪沖刺 平面向量課時(shí)提升訓(xùn)練(4)
2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練(2)
2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練(1)
2022年高考數(shù)學(xué)三輪沖刺 三角函數(shù)課時(shí)提升訓(xùn)練(1)
2022年高考數(shù)學(xué)三輪沖刺 平面向量課時(shí)提升訓(xùn)練(3)
2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練(7)
2022年高考數(shù)學(xué)三輪沖刺 數(shù)列課時(shí)提升訓(xùn)練(4)
2022年高考數(shù)學(xué)三輪沖刺 解三角形課時(shí)提升訓(xùn)練(1)
2022年高考數(shù)學(xué)三輪沖刺 數(shù)列課時(shí)提升訓(xùn)練(3)
2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練(5)
2022年高考數(shù)學(xué)三輪沖刺 基本初等函數(shù)課時(shí)提升訓(xùn)練(1)
2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練(13)
2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練(9)
2022年高考數(shù)學(xué)三輪沖刺 三角函數(shù)課時(shí)提升訓(xùn)練(7)
2022年高考數(shù)學(xué)三輪沖刺 基本初等函數(shù)課時(shí)提升訓(xùn)練(2)
2022年高考數(shù)學(xué)三輪沖刺 數(shù)列課時(shí)提升訓(xùn)練(2)
2022年高考數(shù)學(xué)三輪沖刺 基本初等函數(shù)課時(shí)提升訓(xùn)練(5)
2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練(8)
2022年高考數(shù)學(xué)三輪沖刺 平面向量課時(shí)提升訓(xùn)練(2)
2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練(12)
2022年高考數(shù)學(xué)三輪沖刺 三角函數(shù)課時(shí)提升訓(xùn)練(5)
2022年高考數(shù)學(xué)三輪沖刺 三角函數(shù)課時(shí)提升訓(xùn)練(3)
2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練(4)
2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練(3)
2022年高考數(shù)學(xué)三輪沖刺 三角函數(shù)課時(shí)提升訓(xùn)練(2)
2022年高考數(shù)學(xué)三輪沖刺 平面向量課時(shí)提升訓(xùn)練(5)
2022年高考數(shù)學(xué)三輪沖刺 專(zhuān)題 函數(shù)、不等式恒成立問(wèn)題練習(xí)題理
2022年高考數(shù)學(xué)三輪沖刺 專(zhuān)題 數(shù)列與不等式練習(xí)題理
2022年高考數(shù)學(xué)三輪沖刺 專(zhuān)題 待定系數(shù)法的應(yīng)用練習(xí)題理
2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練(10)
2022年高考數(shù)學(xué)三輪沖刺 集合與函數(shù)課時(shí)提升訓(xùn)練(11)
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!