(陜西專版)中考數(shù)學(xué)新突破復(fù)習(xí) 第一部分 教材同步復(fù)習(xí) 第三章 函數(shù) 3.5 二次函數(shù)的綜合與應(yīng)用課件.ppt
《(陜西專版)中考數(shù)學(xué)新突破復(fù)習(xí) 第一部分 教材同步復(fù)習(xí) 第三章 函數(shù) 3.5 二次函數(shù)的綜合與應(yīng)用課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《(陜西專版)中考數(shù)學(xué)新突破復(fù)習(xí) 第一部分 教材同步復(fù)習(xí) 第三章 函數(shù) 3.5 二次函數(shù)的綜合與應(yīng)用課件.ppt(16頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第三章函數(shù),第一部分教材同步復(fù)習(xí),3.5二次函數(shù)的綜合與應(yīng)用,,知識(shí)要點(diǎn)歸納,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的交點(diǎn)坐標(biāo)是一元二次方程ax2+bx+c=0(a≠0)的實(shí)數(shù)根,函數(shù)圖象與x軸的交點(diǎn)情況可由對(duì)應(yīng)方程的根的判別式__________的符號(hào)來(lái)判定.,?知識(shí)點(diǎn)一二次函數(shù)與一元二次方程,b2-4ac,【注意】用二次函數(shù)y=ax2+bx+c(a≠0)的圖象估計(jì)一元二次方程ax2+bx+c=0(a≠0)的根時(shí),一元二次方程的根即就是二次函數(shù)圖象與x軸交點(diǎn)坐標(biāo)的橫坐標(biāo).,一,兩,二次函數(shù)的應(yīng)用關(guān)鍵在于建立二次函數(shù)的數(shù)學(xué)模型,這就需要認(rèn)真審題,理解題意.利用二次函數(shù)解決實(shí)際問(wèn)題,應(yīng)用最多的是根據(jù)二次函數(shù)的最值確定最大利潤(rùn)、最節(jié)省的方案等問(wèn)題.,?知識(shí)點(diǎn)二二次函數(shù)的實(shí)際應(yīng)用,1.題型特點(diǎn)二次函數(shù)與幾何知識(shí)的綜合應(yīng)用題型很多,最常見(jiàn)的類型有存在性問(wèn)題、動(dòng)點(diǎn)問(wèn)題、動(dòng)手操作問(wèn)題,涉及的內(nèi)容有方程、函數(shù)、等腰三角形、直角三角形、相似三角形、平行四邊形、梯形等多種知識(shí),解決這類綜合應(yīng)用問(wèn)題,關(guān)鍵是要善于借助數(shù)學(xué)綜合題中所隱含的數(shù)形結(jié)合、轉(zhuǎn)化、方程等重要的數(shù)學(xué)思想建立函數(shù)模型.,?知識(shí)點(diǎn)三二次函數(shù)與幾何的綜合運(yùn)用,2.方法歸納(1)存在性問(wèn)題:注意靈活運(yùn)用數(shù)形結(jié)合思想,可先假設(shè)存在,然后再借助已知條件求解,如果有解(求出的結(jié)果符合題目要求),則假設(shè)成立,即存在,如果無(wú)解(推出矛盾或求出的結(jié)果不符合題目要求),則假設(shè)不成立,即不存在;(2)動(dòng)點(diǎn)問(wèn)題:通常利用數(shù)形結(jié)合、分類和轉(zhuǎn)化思想,借助圖形,切實(shí)把握?qǐng)D形運(yùn)動(dòng)的全過(guò)程,動(dòng)中取靜,選取某一時(shí)刻作為研究對(duì)象,然后根據(jù)題意建立方程模型或者函數(shù)模型求解.,,三年中考講練,【例1】如圖,以(1,-4)為頂點(diǎn)的二次函數(shù)y=ax2+bx+c的圖象與x軸負(fù)半軸交于A點(diǎn),則一元二次方程ax2+bx+c=0的正數(shù)解的范圍是()A.2<x<3B.3<x<4C.4<x<5D.5<x<6,析,精,例,典,二次函數(shù)與一元二次方程,C,【思路點(diǎn)撥】本題考查二次函數(shù)與一元二次方程的近似根.先根據(jù)圖象得出對(duì)稱軸左側(cè)圖象與x軸交點(diǎn)橫坐標(biāo)的取值范圍,再利用對(duì)稱軸x=1,可以算出右側(cè)交點(diǎn)橫坐標(biāo)的取值范圍.【解答】∵二次函數(shù)y=ax2+bx+c的頂點(diǎn)為(1,-4),∴對(duì)稱軸為x=1,而對(duì)稱軸左側(cè)圖象與x軸交點(diǎn)橫坐標(biāo)的取值范圍是-3<x<-2,∴右側(cè)交點(diǎn)橫坐標(biāo)的取值范圍是4<x<5.,【例2】(2015陜西)在平面直角坐標(biāo)系中,拋物線y=x2+5x+4的頂點(diǎn)為M,與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn).(1)求點(diǎn)A,B,C的坐標(biāo);(2)求拋物線y=x2+5x+4關(guān)于坐標(biāo)原點(diǎn)O對(duì)稱的拋物線的函數(shù)表達(dá)式;(3)設(shè)(2)中所求拋物線的頂點(diǎn)為M′,與x軸交于A′,B′兩點(diǎn),與y軸交于C′點(diǎn),在以A,B,C,M,A′,B′,C′,M′這八個(gè)點(diǎn)中的四個(gè)點(diǎn)為頂點(diǎn)的平行四邊形中,求其中一個(gè)不是菱形的平行四邊形的面積.,二次函數(shù)與幾何的綜合應(yīng)用,(熱頻考點(diǎn)),【思路點(diǎn)撥】本題考查了二次函數(shù)的性質(zhì)與圖象、中心對(duì)稱、平行四邊形的判定、菱形的判定.(1)令y=0,求出x的值;令x=0,求出y,即可解答;(2)先求出A,B,C關(guān)于坐標(biāo)原點(diǎn)O對(duì)稱后的點(diǎn)為(4,0),(1,0),(0,-4),再代入解析式,即可解答;(3)取四點(diǎn)A,M,A′,M′,連接AM,MA′,A′M′,M′A,MM′,由中心對(duì)稱性可知,MM′過(guò)點(diǎn)O,OA=OA′,OM=OM′,由此判定四邊形AMA′M′為平行四邊形,又知AA′與MM′不垂直,從而平行四邊形AMA′M′不是菱形,過(guò)點(diǎn)M作MD⊥x軸于點(diǎn)D,求出拋物線的頂點(diǎn)坐標(biāo)M,根據(jù)S平行四邊形AMA′M′=2S△AMA′,即可解答.,謝謝觀看!,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 陜西專版中考數(shù)學(xué)新突破復(fù)習(xí) 第一部分 教材同步復(fù)習(xí) 第三章 函數(shù) 3.5 二次函數(shù)的綜合與應(yīng)用課件 陜西 專版 中考 數(shù)學(xué) 突破 復(fù)習(xí) 第一 部分 教材 同步 第三 二次 綜合 應(yīng)用 課件
鏈接地址:http://m.italysoccerbets.com/p-12173194.html