火車車輪圓孔火焰切割專機(jī)設(shè)計
火車車輪圓孔火焰切割專機(jī)設(shè)計,火車,車輪,圓孔,火焰,切割,專機(jī),設(shè)計
1 目錄 ...................................................................1 中文摘要 ...............................................................2 Abstract...............................................................3 第 1 章 緒論 ..........................................................4 1.1 切割技術(shù)的種類及發(fā)展 ...........................................4 1.2 數(shù)控火焰切割簡介 ...............................................4 1.3 割炬運動分析 ...................................................7 第 2 章 數(shù)學(xué)模型及工藝分析 .............................................9 2.1 鋼管典型相貫線數(shù)學(xué)模型的建立 ....................................9 2.2 割炬運動分析 ..................................................11 2.3 焊接坡口工藝分析 ..............................................12 2.4 割炬的徑向補(bǔ)償 ................................................13 第 3 章 設(shè)備總體方案及布局 .............................................14 3.1 機(jī)床總體方案 .................................................14 3.2 切割機(jī)傳動系統(tǒng)的簡要說明 ......................................14 3.3 功能和技術(shù)參數(shù)分析 ............................................16 第 4 章 機(jī)械系統(tǒng)設(shè)計 ...................................................18 4.1 Z 軸工作滑臺的設(shè)計 ............................................18 4.2 調(diào)整絲杠的設(shè)計 .................................................28 4.3 齒輪齒數(shù)的確定與較核 ..........................................30 4.4 支架的設(shè)計 ....................................................31 第 5 章 控制系統(tǒng)設(shè)計 ..................................................34 5.1 系統(tǒng)方案設(shè)計 ...................................................34 5.2 控制系統(tǒng)的選用 ................................................35 5.3 數(shù)控裝置的部件結(jié)構(gòu)和安裝 ......................................36 5.4 控制系統(tǒng)的硬件設(shè)計 ............................................36 5.5 圖形交互人機(jī)界面 ..............................................38 總結(jié) ..................................................................39 致謝 ..................................................................40 參考文獻(xiàn) ..............................................................41 2 中文摘要 本設(shè)計以相貫線數(shù)學(xué)參數(shù)模型的基礎(chǔ), 分析切割機(jī)的割炬的軌跡運動, 將切割 運動分解為割炬回轉(zhuǎn)、割炬平移、割炬擺角和割炬徑向補(bǔ)償四軸聯(lián)動,對鋼管相貫 焊接坡口數(shù)控切割運動進(jìn)行研究,并最終完成相貫線切割機(jī)的設(shè)計 .該切割機(jī)采用數(shù) 控原理進(jìn)行軌跡控制,采用火焰切割方式工作.設(shè)計共分四部分 :相貫線數(shù)學(xué)參數(shù)模 型的建立,切割機(jī)總體方案設(shè)計,機(jī)械結(jié)構(gòu)設(shè)計和控制系統(tǒng)設(shè)計 . 關(guān) 鍵 詞:大型管材;相貫線;焊接坡口;數(shù)控火焰切割 3 Abstract Based on the mathematical model of intersecting line and the analysis of the track of cutting torch, the design studies NC cutting movement for welding groove of pipe intersecting and finishes the design of pipe intersecting line cutting device . The cutting movement was divided into four axis relative motions of cutting torch, i. e. rotate round the pipe, shift along pipe, swing and compensate along radial direction. The device uses NC principle for intersecting line track control, the cutting method is flame-cutting. And the design contains four sections: the establishment of mathematical model of intersecting line, the design of the whole scheme, the design of mechanical structure and the design of NC control system. Keywords: Large-scale pipe; Intersecting line; Welding groove; NC flame-cutting 4 第 1 章 緒論 1.1 切割技術(shù)的種類及發(fā)展 切割是焊接生產(chǎn)備料工序的重要加工方法,包括冷、熱兩類切割,而熱切割又 有氣體火焰切割、電弧切割、等離子切割和激光切割等各種工藝方法。目前各種金 屬和非金屬切割已經(jīng)成為現(xiàn)代工業(yè)生產(chǎn)(特別是焊接生產(chǎn))中的一個重要工序,被 焊工件所需要的幾何形狀和尺寸,絕大多數(shù)是通過切割來實現(xiàn)的。切割技術(shù)被廣泛 的應(yīng)用在國民經(jīng)濟(jì)建設(shè)的各個領(lǐng)域里。 近年來,由于機(jī)械工業(yè)飛速發(fā)展的需求和國外先進(jìn)技術(shù)的引進(jìn),我國切割技術(shù) 無論在新工藝的開發(fā)方面,還是在新能源的利用方面都有了長足的發(fā)展。自動化、 半自動化切割技術(shù)的發(fā)展,使得切割技術(shù)可以代替部分機(jī)械加工,大大提高了工作 效率,還可以提高金屬材料的利用率。 氣體火焰切割是熱切割中最早被采用和最常用的工藝方法,這種切割方法設(shè)備 簡單、操作方便靈活、投資費用少、切割質(zhì)量好等特點。尤其是能夠切割各種含曲 線形狀的零件和大厚度工件等一系列特點使得它自進(jìn)入工業(yè)領(lǐng)域以來一直作為工業(yè) 生產(chǎn)中切割碳鋼和低合金鋼的基本方法而被廣泛采用。 1.2 數(shù)控火焰切割簡介 1.2.1 火焰切割及數(shù)控火焰切割技術(shù) 火焰切割就是利用氣體火焰的熱能將工件切割處金屬預(yù)熱到一定溫度后,噴出 高速切割氧氣流使預(yù)熱處的金屬燃燒并放出熱量實現(xiàn)切割的方法。最常見的氣體切 割是氧-乙炔火焰切割。 鋼材的氣割是利用氣體火焰(稱預(yù)熱火焰)將鋼材表面加熱到能夠在氧氣流中 燃燒的溫度(即燃點) ,然后送進(jìn)高純度,高流速切割氧,使鋼材中的鐵在氧氛圍 中燃燒生成氧化鐵熔渣,同時放出大量熱,借助這些燃燒熱和熔渣不斷加熱鋼材的 下層和切口邊緣,使之也達(dá)到燃點,直至工件的底部。與此同時,切割氧流把氧化 鐵熔渣吹掉,從而形成切口將鋼材切割開。 數(shù)控火焰切割機(jī)是應(yīng)用計算機(jī)數(shù)字程序控制(Computer Numerical program Control)的全自動化切割設(shè)備,人們借助計算機(jī)輔助設(shè)計程序,把所要切割零件 5 的形狀、尺寸、切割順序及切割過程中的各項輔助功能按一定的語言程序規(guī)則進(jìn)行 編程,然后輸入控制機(jī),經(jīng)運算后發(fā)出運動控制及輔助功能指令,再有伺服行走系 統(tǒng)和切割執(zhí)行機(jī)構(gòu)協(xié)調(diào)動作,從而完成所需零件的切割。 數(shù)控火焰切割機(jī)的特點: ⑴.功能齊全,自動化程度高.具有割炬自動升降和自動調(diào)高、自動點火、自 動穿孔、自動切割、噴粉畫線、噴印字碼、噴水冷卻、割縫自動補(bǔ)償、熄火返 回重割、動態(tài)圖形跟蹤顯示等功能,實現(xiàn)了切割全過程的自動控制。 ⑵.可配置多個割炬工作,省去了制作樣板和劃線的工時,生產(chǎn)效率高. 采用套料程序,提高鋼板利用率。 ⑶.能合理選定切割工藝參數(shù)及切割路徑,可減小熱變形,加工精度高,切割 質(zhì)量好,能夠減少后續(xù)打磨和裝焊工時。 ⑷.切割信息易于準(zhǔn)備、修改和保存。 ⑸.機(jī)器運行穩(wěn)定可靠,操作方便。 1.2.2 國內(nèi)外數(shù)控火焰切割技術(shù)的發(fā)展 國外工業(yè)發(fā)達(dá)國家,如德國、日本、瑞典等,正積極開發(fā)各種新型切割設(shè)備 (特別是數(shù)控切割機(jī))和新的切割工藝。相繼開發(fā)出了各種快速割嘴和高速切割方 法,如高壓擴(kuò)散型快速割嘴、高壓細(xì)氧射流割嘴、高壓氧簾快速割嘴、雙層氧簾割 嘴,以及多割嘴組合高速切割方法等。 國外數(shù)控火焰切割機(jī)的生產(chǎn)廠家主要集中在德國、美國和日本.其主要廠家有 德國的伊薩(E SAB) 、梅塞爾(MESSER)日本的田中(TANAKA)小池(KOIKE) ,美 國的(L-TEC) 、林德(LINDA)等。而能夠代表數(shù)控等離子切割技術(shù)最高水平的廠 家集中在德國,德國伊薩的數(shù)控切割機(jī)是當(dāng)今世界上品種最全、功能最多、水平最 高、幾乎包括了所有非接觸式切割手段的數(shù)控切割機(jī)。 國外數(shù)控火焰切割機(jī)的生產(chǎn)廠家主要集中在德國、美國和日本.其主要廠家有 德國的伊薩(E SAB) 、梅塞爾(MESSER)日本的田中(TANAKA)小池(KOIKE) ,美 國的(L-TEC) 、林德(LINDA)等.而能夠代表數(shù)控等離子切割技術(shù)最高水平的廠 家集中在德國,德國伊薩的數(shù)控切割機(jī)是當(dāng)今世界上品種最全、功能最多、水平最 6 高、幾乎包括了所有非接觸式切割手段的數(shù)控切割機(jī)。 我國數(shù)控切割技術(shù)的開發(fā)工作開始于 20 世紀(jì) 80 年代初,起步是數(shù)控火焰切割 機(jī)。到了 20 世紀(jì) 90 年代,在數(shù)控火焰切割技術(shù)趨于成熟,國內(nèi)一些數(shù)控切割機(jī)產(chǎn) 品在許多方面已形成自身獨有的特點,實現(xiàn)了“自動化,多功能和高可靠性” 。在 某些方面,產(chǎn)品的技術(shù)性能甚至超過了國外的產(chǎn)品。 在此基礎(chǔ)上,國內(nèi)的生產(chǎn)企業(yè)又通過嫁接引入國際上先進(jìn)的等離子切割系統(tǒng), 采取引進(jìn)和自主開發(fā)相結(jié)合的方法,開展了數(shù)控等離子切割機(jī)的研制。歷經(jīng) 20 多 年,終于取得了可喜的成就,目前國產(chǎn)數(shù)控等離子、火焰切割機(jī)門類和規(guī)格已相當(dāng) 齊全,其中部分產(chǎn)品在技術(shù)性能指標(biāo)和功能上均已接近或達(dá)到國際水平,產(chǎn)業(yè)化進(jìn) 展順利,并已具備一定的經(jīng)營規(guī)模。 目前國內(nèi)生產(chǎn)數(shù)控火焰切割機(jī)的廠家主要有梅塞爾切割焊接有限公司,上海伊 薩漢考克有限公司,哈爾濱華威焊切成套設(shè)備有限公司,哈爾濱四海數(shù)控機(jī)械制造 有限公司,深圳市博利昌數(shù)控切割設(shè)備有限公司,無錫華聯(lián)焊割設(shè)備廠,北京百惠 宏達(dá)科技有限公司等幾家。 現(xiàn)在國產(chǎn)數(shù)控火焰切割機(jī)與國外產(chǎn)品的差距已經(jīng)不大,性能也比較穩(wěn)定,只是 國產(chǎn)切割機(jī)為保證質(zhì)量,一些主要部件如電磁氣閥、減壓閥、交流伺服系統(tǒng)等均采 用進(jìn)口件,目前產(chǎn)品的質(zhì)量仍然不穩(wěn)定。總之,無論從切口質(zhì)量、易損件的耐用度 等國產(chǎn)與進(jìn)口的仍有一定的差距,因此要完全替代進(jìn)口還需一段時間。 1.2.3 數(shù)控火焰切割機(jī)的市場及發(fā)展 數(shù)控火焰切割機(jī)是一種將電腦控制、精密機(jī)械傳動、氧、燃?xì)馇懈钊呒夹g(shù)相 結(jié)合的高效率、高精度、高可靠的熱切割設(shè)備。它適用于造船工業(yè),重型機(jī)械,化 工設(shè)備,鍋爐制造,機(jī)車車輛,石油化工等制造行業(yè)的高精度鋼板熱切割的新型自 動化設(shè)備。 現(xiàn)代金屬制造企業(yè)如:造船、壓力容器、工程機(jī)械、電站設(shè)備、橋梁和鋼結(jié)構(gòu) 等行業(yè)為優(yōu)化其產(chǎn)品的結(jié)構(gòu)性能,使得產(chǎn)品更經(jīng)濟(jì),生產(chǎn)周期更短,在國際市場更 具競爭力就必須對其原有的制造技術(shù)和生產(chǎn)工藝提出新的設(shè)想和要求,首先要徹底 改變以往手工和半自動切割的低效率狀況,廣泛采用數(shù)控切割設(shè)備,只有這樣才能 從根本上緩解了我國機(jī)械制造業(yè)飛速發(fā)展所帶來的鋼板和其他金屬板材切割量急劇 7 增大的巨大壓力,為今后在整個制造業(yè)擴(kuò)大應(yīng)用數(shù)控等離子、火焰切割機(jī)和應(yīng)對未 來國外同類企業(yè)的挑戰(zhàn)打下了基礎(chǔ)。 目前,我國機(jī)械加工行業(yè)中鋼板下料普遍采用手工—乙炔切割,這種現(xiàn)象不僅 存在于小規(guī)模單件生產(chǎn)的小型企業(yè),也存在于大批量生產(chǎn)的大型企業(yè)中,而國外企 業(yè)的下料工序大部分采用了數(shù)控氧—乙炔或數(shù)控等離子切割方法,不僅可提高材料 利用率,而且改善了產(chǎn)品質(zhì)量,優(yōu)化了工作環(huán)境,使人員工作效率得到了提高。之 所以數(shù)控下料不能在我國普及主要有三個方面原因:資金問題、設(shè)備故障維護(hù)問題、 操作問題。因此研制功能不是很強(qiáng)大但操作簡單,性能可靠,價格相對便宜的實用 型的火焰切割機(jī)就迫在眉睫.這也就意味著目前設(shè)計和制造經(jīng)濟(jì)型數(shù)控火焰切割機(jī) 在國能將有廣闊的市場。 1.3 本設(shè)計簡介 隨 著 海 洋 石 油 工 業(yè) 的 發(fā) 展 ,海 洋 工 程 結(jié) 構(gòu) 建 造 將 面 對 面 大 量 的 鋼 管 相 貫 的 加 工 .南 海 西 部 石 油 合 眾 公司,主要以海上平臺上部模塊建造工程為主,而大型管材 相貫是該海上平臺加工制造過程中經(jīng)常遇見的切割焊接結(jié)構(gòu).相 貫 焊 接 前 ,管 端 相 貫 線 需 要 加 工 ,相 貫 線 上 每 一 點 的 焊 接 坡 口 也 需 要 加 工 .根 據(jù) 石 油 天 然 氣 行 業(yè) 標(biāo) 準(zhǔn) (SY/T 4802-92)和 美 國 石 油 協(xié) 會 標(biāo) 準(zhǔn) (API PI 2A),相 貫 線 上 每 一 點 的 焊 接 坡 口 取 決 于 該 點 的 局 部 兩 面 角 . 不 同 形 式 的 鋼 管 相 貫 ,相 貫 線 上 每 一 點 的 局 部 兩 面 角 各 不 相 同 ,局 部 兩 面 角 沿 相 貫 線 在 不 斷 變 化 . 目前,該公司切割下料以人工作業(yè)為主,對于這種帶坡口相貫線均采用人工放 樣等工藝方法來進(jìn)行加工,因此下料工作進(jìn)度與效率成為影響整個平臺建造工程進(jìn) 度的主要因素,為改變工作強(qiáng)度大和效率低的現(xiàn)狀,本課題嘗試運用所學(xué)的機(jī)電 一體化的相關(guān)知識進(jìn)行大型管材相貫線切割機(jī)的設(shè)計. 本課題所研究的大型管材相貫線切割機(jī)是屬于數(shù)控火焰切割機(jī),如下圖1-1它具 有一般數(shù)控機(jī)床的特點,能根據(jù)數(shù)控加工程序,自動完成從點火 -預(yù)熱-通切割氧- 切割-熄火-返回原點的整套切割過程。但數(shù)控火焰切割機(jī)又有別于一般數(shù)控金屬切 削機(jī)床,它利用氧-乙炔火焰把鋼板割縫加熱到熔融狀態(tài),用高壓氧吹透鋼板進(jìn)行 切割,而不像金屬切削機(jī)床那樣,是用金屬切削工具與工件剛性接觸來進(jìn)行切削加工。 目前這種數(shù)控火焰切割機(jī)仍依賴進(jìn)口.因此,開發(fā)這種火焰切割機(jī)具有重要的意義. 8 1-1 大型管材相貫線切割機(jī) 9 第 2 章 數(shù)學(xué)模型及工藝分析 2.1 鋼管典型相貫線數(shù)學(xué)模型的建立 如圖 2-1 所示,空間相貫線是一個復(fù)雜的空間曲線,描述其軌跡需要用空間坐標(biāo) 方程 f(x,y,z)=0,其函數(shù)關(guān)系復(fù)雜,但由于相貫線是兩個圓柱的交線,所以,采用柱 坐標(biāo)可以把三維坐標(biāo)轉(zhuǎn)化為二維坐標(biāo)方程 f(h,?)=0.以下相貫線均指支管內(nèi)圓柱和 主管外圓柱相貫. 圖 2-1 空間相貫線曲線 如圖 2-2 所示,在空間三維坐標(biāo)系下兩圓柱的相貫線方程為 (1) (2) 式中 r -- 支管半徑 (mm) R -- 主管半徑 (mm) 坐標(biāo)系與 坐標(biāo)系間存在以下坐標(biāo)變換關(guān)系 Oxyzx'yz 圖 2-2 兩圓柱的相貫線 (3) 2yzR??'r'cosinxy??? 10 (4) (5) 式中 -- 坐標(biāo)系旋轉(zhuǎn)角 ,亦即兩管交角.? 在平面內(nèi)支管圓柱面的方程為 (6) (7) 圖2- 3 支管圓柱面的方程 式中 -- 支管上的旋轉(zhuǎn)角. 由式(1)~(7) 式得出兩圓柱相貫線各點的參數(shù)方程如下 (8) (9) (10) 取在 坐標(biāo)系下過相貫線上x’軸坐標(biāo)值最大的點且垂直于x’軸的平面為下料Ox'yz 基準(zhǔn)面.其在 坐標(biāo)系下的方程為 ' 'sincoyxy????'z'cosyr??'inz coscosinyrx????2siRr? 11 ??22()sin()(cos()( tanRrerhf ??????????????? ?[1] (11)由此可得支管下料高度為 (12)即下料高度 h 是支管上的旋轉(zhuǎn)角 的函數(shù):? (13)以上討論的是典型相貫線數(shù)學(xué)方程,即兩圓柱軸線相交成一角度.在兩圓柱軸線異面并有一偏心距 e 時,其相貫線方程為: 式中 -- 支管壁厚 (mm)? -- 扭轉(zhuǎn)角,標(biāo)志主管相對于支管的扭轉(zhuǎn)角度.? 2.2 割炬運動分析 如圖 2-3 所示,被切支管保持不動,割炬沿被切支管做 R 軸(旋轉(zhuǎn)軸),T 軸(擺動 軸),A 軸(縱向補(bǔ)償軸)三軸和環(huán)架的 Z 軸(軸向移動)共四軸聯(lián)動.正式切割前,手動 完割炬和環(huán)架的徑向運動,以調(diào)整割炬與被切管徑向位置;在切割過程中, 割炬按照 設(shè)定速度繞被切管作回轉(zhuǎn)運動, 被切管剖面的擺動和徑向補(bǔ)償運動,環(huán)架沿被切管 軸向作軸向移動,其速度大小是由管壁厚和害炬回轉(zhuǎn)速度決定. 割炬在被切管剖面 的擺動角度按工藝規(guī)范切出坡口.四軸必須按照一定的數(shù)學(xué)關(guān)系聯(lián)動,才能切出所需 的空間相貫曲面. 'cotsxrR???(cots)(in)rxy?????cs2()cots)(cossin)inyrfrRRr??????? 12 圖 2-4 割炬運動 注:[1]肖聚亮,王國棟.火焰數(shù)控切管機(jī)割炬軌研究及仿真 2.3 焊接坡口工藝分析 根據(jù)焊接工藝要求,為保證構(gòu)件的強(qiáng)度和避免較大的焊縫尺寸,一般中厚板的 接頭都要進(jìn)行開坡口焊接.因此,切管時不僅要切出相貫線,還要切出坡口角,切管機(jī) 最后切出的管端形狀是空間曲面.根據(jù)美國焊接學(xué)會AWS D1.1規(guī)范要求,所開焊接坡 形式,根部間隙和鈍邊高度均取決于相交雙管相貫線上各部位的局部二面角.而支管 下料時切割高度曲線的確定也與相貫線上的局部二面角相關(guān).不同管徑,不同厚度, 不同交角的相交雙管的相貫線上的各部位局部二面角各不相同.在工程實際中,焊接 坡口角度是通過鈍邊和坡口切割高度來保證的. 13 [1]圖 2-5 焊接坡口參數(shù)及裝配規(guī)范坡口角的取值是根據(jù)兩面角的大小來決定.相貫線上任選兩點兩面角 為:? 根 據(jù) 石 油 天 然 氣 行 業(yè) 標(biāo) 準(zhǔn) (SY/T 4802-92)和 美 國 石 油 協(xié) 會 標(biāo) 準(zhǔn) (API PI 2A)來 確 定 坡 口 角 .按 API標(biāo) 準(zhǔn) 當(dāng) ≤ 90°時 ,坡 口 角 α = /2; 當(dāng) > 90°時 , ? α = 45°. 2.4 割炬的徑向補(bǔ)償 在 實 際 切 割 過 程 中 是 沿 支 管 外 表 面 進(jìn) 行 的 ,在 這 一 過 程 中 不 僅 要 完 成 相 貫 線 的 切 割 ,也 要 完 成 坡 口 的 切 割 .坡 口 角 是 由 實 際 切 割 角 來 保 證 ,實 際 切 割 角 由 割? 炬 繞 支 管 外 表 面 一 點 在 軸 剖 面 內(nèi) 偏 轉(zhuǎn) 實 現(xiàn) 的 ,其 偏 轉(zhuǎn) 的 結(jié) 果 不 應(yīng) 使 要 切 割 的 相 貫 線 偏 離 原 來 的 位 置 ,為 此 ,割 炬 需 沿 支 管 外 表 面 作 徑 向 補(bǔ) 償 . 其 補(bǔ) 償 量 ξ 為 :ξ = tan?? 圖 2-6 徑向補(bǔ)償 arc[os(????? 14 第 3 章 設(shè)備總體方案及布局 3.1 機(jī)床總體方案 對于大型鋼管的相貫線的切割有兩個方案: 方 案 1: 鋼 管 由 主 軸 帶 動 旋 轉(zhuǎn) , 同 時 割 矩 槍 只 需 進(jìn) 行 軸 向 移 動 即 可 實 現(xiàn) 切 割 要 求 , 所 以 要 實 現(xiàn) 2 軸 聯(lián) 動 。 方 案 2: 鋼 管 靜 止 不 動 , 并 且 由 于 相 貫 鋼 管 的 直 徑 大 小 不 同 、 相 貫 角 度 不 同 , 都 會 導(dǎo) 致 相 貫 線 軌 跡 的 不 同 , 因 此 割 矩 槍 必 須 要 利 用 數(shù) 控 系 統(tǒng) 實 現(xiàn) 軸 向 轉(zhuǎn) 動 、 軸 向 移 動 、 徑 向 補(bǔ) 償 移 動 、 軸 剖 面 內(nèi) 擺 動 ,均 采 用 步 進(jìn) 電 動 機(jī) 帶 動 , 所 以 要 實 現(xiàn) 4 軸 聯(lián) 動 ,并 且 要 求 能 進(jìn) 行 人 機(jī) 對 話 , 編 程 及 操 作 方 便 , 診 斷 功 能 和 糾 錯 功 能 強(qiáng) , 具 有 顯 示 和 通 信 功 能 , 縮 短 非 生 產(chǎn) 準(zhǔn) 備 時 間 , 提 高 生 產(chǎn) 率 。 由于被加工的鋼管最大重量可達(dá) M=7.8×1000×3.14×(0.5×0.5-0.46×0.46) ×12=11285.9kg 且鋼管長度最長時可達(dá) 12m。 如果照方案 1 鋼管轉(zhuǎn)動起來需要耗費比較大的功率,并且鋼管過長轉(zhuǎn)動起來還會 產(chǎn)生較大的扭矩從而影響鋼管的加工質(zhì)量.因此本設(shè)計采用方案 2. 3.2 切割機(jī)傳動系統(tǒng)的簡要說明 3.2.1 切割機(jī)各軸的定義 切割機(jī)在實現(xiàn)相貫線切割時,需要四軸聯(lián)動和兩個手動來完成.現(xiàn)定義四軸如下 圖 3-1. 15 圖 3-1 切割機(jī)的四軸聯(lián)動 3.2.2 Z 軸工作滑臺簡明傳動系統(tǒng)圖 z 軸主要完成沿著鋼管軸心的軸向進(jìn)給 圖 3-2 Z 軸傳動系統(tǒng)圖 3.2.3 R 軸和 A 軸傳動系統(tǒng)圖 R 軸和 A 軸分別實現(xiàn)割炬繞著鋼管轉(zhuǎn)動和沿鋼管徑向補(bǔ)償 .如圖 3-3。 16 圖 3-3 R 軸和 A 軸傳動系統(tǒng)圖 3.2.4 T 軸和徑向調(diào)整傳動系統(tǒng)圖 T 軸是實現(xiàn)割炬的前后擺動,以切出所需要的坡口角.其擺動行程為 30°-30°. 圖 3-4 T 軸和徑向調(diào)整傳動系統(tǒng)圖 3.3 功能和技術(shù)參數(shù)分析 相干鋼管的直徑大小不同、相干角度不同,都會導(dǎo)致相干相貫線軌跡的不同, 因此割矩槍必須要利用數(shù)控系統(tǒng)實現(xiàn)縱向移動,旋轉(zhuǎn)運動和徑向移動的定位精度、 走刀速度等諸技術(shù)參數(shù),并且要求能進(jìn)行人機(jī)對話,編程及操作方便,診斷功能和 糾錯功能強(qiáng),具有顯示和通信功能,縮短非生產(chǎn)準(zhǔn)備時間,提高生產(chǎn)率。加上割矩 槍在旋轉(zhuǎn)過程中隨著切割位置的不同還需要割矩擺動角度參數(shù),即機(jī)床要實現(xiàn)四軸 聯(lián)動。 加工的鋼管直徑尺寸 φ200~φ1000mm,最長 12000mm,厚度 10~40mm,屬于 比較大型的鋼管,精度要求不高,主要考慮機(jī)構(gòu)機(jī)床的剛度要求。因此可采用開環(huán) 結(jié)構(gòu),并選擇步進(jìn)電動機(jī)作為機(jī)床的動力源。 17 步進(jìn)電動機(jī)可通過數(shù)控裝置實現(xiàn)無級調(diào)速,因此主軸轉(zhuǎn)速只需要滿足最小與最 大極限要求轉(zhuǎn)速即可在此范圍內(nèi)實現(xiàn)連續(xù)的速度變化要求。 由于乙炔在熱切割里應(yīng)用的廣泛性和低成本,決定選用乙炔作為氣體燃料。選 用外混式割嘴。 查《簡明焊工手冊》P581 可得火焰切割速度如下: 表 3-1 火焰切割速度 割嘴 板厚/mm 號碼 喉徑 d/mm 切割速度 (mm/min) 5~20 1 0.6 800~300 25~40 2 0.8 500~250 35~70 3 1.0 350~150 18 第 4 章 機(jī)械系統(tǒng)設(shè)計 4.1 Z 軸工作滑臺的設(shè)計 4.1.1 脈沖當(dāng)量 即系統(tǒng)分辨率。p? 本設(shè)計中選用 =0.01mmp 4.1.2 選定傳動比 當(dāng) =1 時,可使步進(jìn)電機(jī)直接與絲杠聯(lián)接,有利于簡化結(jié)構(gòu),提高精度。因此i 本設(shè)計中取 =1。i 4.1.3 初選步機(jī)電機(jī) 根據(jù)公式 公式 (4---1)pbLi??360? 其中 為傳動比, 為電機(jī)步距角, 為滾珠絲杠導(dǎo)程, 為脈沖當(dāng)量。ib0Lp? 因為 =1, =0.01mm,現(xiàn)取 =4mm,可得 = 0.9o初選步進(jìn)電機(jī)型號為ip?0b? 90BF001。 4.1.4 計算絲杠承受的質(zhì)量 在本設(shè)計中加工的最在鋼管直徑是 1m, 以 30 o 為鋼管的最小相干角度,則此 時絲杠的行程至少應(yīng)為 1.73m, 絲杠的尺寸取整為 2m. 燕尾槽的重量大約為 0.10×0.6×0.3×0.6×7.8×1000=84.2kg 工作臺的重量為 0.3×0.33×0.04×7.8×1000=30.8kg 齒輪和管狀體的重量大概為 7.8×(0.7×0.7-0.6×0.6)×3.14 ×0.1=318.3kg 再加上繞齒輪轉(zhuǎn)動的燕尾滑塊、兩個電動機(jī)、和火焰切割槍等,取絲杠所承受 的質(zhì)量 M=460kg 19 4.1.5 滾珠絲杠螺母副的選型和校核 滾珠絲杠螺母副初步選型的主要依據(jù)是根據(jù)最大工作載荷和最大靜載荷。初步 選型后,進(jìn)行軸向剛度驗算和壓桿穩(wěn)定性驗算。 4.1.5.1 最大工作載荷的計 本設(shè)計中,選用矩形滾動直線導(dǎo)軌。得滾珠絲杠上的工作載荷: 公式(4—2) 其中 為考慮導(dǎo)軌上的摩擦系數(shù), 對于矩形滾動導(dǎo)軌取 =0.005。G=M 所以,f? f????2.548960.5Fm= 4.1.5.2 最大動載荷 的計算和主要尺寸的初選C 滾珠絲杠最大動載荷 可用下式計算: 公式(4—3) mFfL3? 式中: 為工作壽命, ; 為絲杠轉(zhuǎn)速, ; 為最610/nt? 0/1Lvn? 大進(jìn)給速度; 為絲杠導(dǎo)程; 為額定使用壽命,可取 =15000h; 為運轉(zhuǎn)狀態(tài)0 tmf 系數(shù),現(xiàn) =1.5; 為絲杠工作載荷;mfmF 由板厚 5~20、 25~40、35~70mm 查《簡明焊工手冊 》P581 可得火焰切割速度 分別為 800~300、500~250、150~350mm/min。 綜合考慮大齒輪的旋轉(zhuǎn)運動和底下工作臺的直線運動選項用工作臺的直線進(jìn)給 速度為 =0.8m/minv 公式(4—4))10(810526/0 min/4.166rntL??? 所以, ?9..4C33mFf 本設(shè)計選外循環(huán)滾動螺旋副,查《機(jī)電綜合設(shè)計指導(dǎo)書》表 2-8,根據(jù) Gf??mF 20 1mFLEA??= =4mm,選絲杠公稱直徑 ,有:0Lmd16=?????970C432.58DWoa額 定 靜 載 荷 =額 定 動 載 荷 ,絲 杠 螺 旋 升 角 ,列 數(shù) =圈 數(shù) ,=滾 珠 直 徑 ? 因為 ,所以初選的絲杠螺母副合格。a? 4.1.5.3 傳動效率計算 滾珠絲杠螺母副的傳動效率 為? 公式(4—5))(????tg= 式中: 為絲杠螺旋升角, 為摩擦角,滾珠絲杠副的滾動摩擦系數(shù) =0.003~0.004,f 其摩擦角約等于 。01? 所以, 96.0)13()(?????tgt== ??? 4.1.5.4 剛度驗算 滾珠絲杠副的軸向變形包括絲杠的拉壓變形、絲杠與螺母之間滾道的接觸變形、 絲杠的扭轉(zhuǎn)變形引起的縱向變形以及螺母座的變形和滾珠絲杠軸承的軸向接觸變形。 滾珠絲杠的扭轉(zhuǎn)變形較小,對縱向變形的影響更小,可忽略不計。螺母座只要設(shè)計 合理,其變形量也可忽略不計,只要滾珠絲杠支承的剛度設(shè)計得好,軸承的軸向接 觸變形在此也可以不予考慮。 A) 絲杠的拉壓變形量 1 滾珠絲杠應(yīng)計算滿載時拉壓變形量,其計算公式為 公式(4—6) 21 式中: 為在工作載荷 作用下絲杠總長度上拉伸或壓縮變形量(mm) ;1?mF 為絲杠的工作載荷(N); 為滾珠絲杠在支承間的受力長度 (mm);E 為材料彈性mFL 模量,對鋼 E=20.6×10 4MPa;A 為滾珠絲杠按內(nèi)徑確定的截面積( mm2) ;“+” 號用于拉伸, “—”號用于壓縮。 根據(jù)滾珠直徑 DW=2.381mm 22214.913.54.dA59.38.0604)/3.(7.)/(70.8.5mRe mmw??????????= 公式見《機(jī)電一體化設(shè)計基礎(chǔ)》P25,其中, 為絲杠公稱直徑。 為絲md1d 杠底徑。 取進(jìn)給的絲杠長度 L=2000mm.。 所以 =0.00151mm4-41 105.902.65??==? B) 滾珠與螺紋滾道間的接觸變形量 2? 該變形量與滾珠列、圈數(shù)有關(guān),即與滾珠總數(shù)量有關(guān),與滾珠絲杠長度無關(guān)。 其計算公式: 有預(yù)緊時 公式(4—7)32wm2DF01.?ZYJ=? 式中: 為滾珠直徑(mm) ; 為滾珠總數(shù)量 圈數(shù)×列數(shù);Z 為一圈w ??? 的滾珠數(shù), (外循環(huán)) ; 為滾珠絲杠的公稱直徑(mm) ; 為滾珠絲杠的工wmDd/Z?= mdmF 作載荷(kgf ) ; 為預(yù)緊力( kgf,1kgf=9.8N) ,取工作載荷 的 1/3。YJF 22 因為, 21.3864 Z??= 圈數(shù)×列數(shù)=21×2.5×1=52.5?????5.74231FYJm 所以 0.58m2...810.32 == ?? 因為滾珠絲杠有預(yù)緊力,且預(yù)緊力為工作載荷的 1/3 時, 值可減少一半左2? 右。所以縱向和橫向: =0.000279mm。2? C) 滾珠絲杠副剛度的驗算 絲杠的總的變形量 應(yīng)小于允許的變形量。一般 不應(yīng)大于機(jī)床進(jìn)給21?+= ? 系統(tǒng)規(guī)定的定位精度值的一半。 因為 m01789.0.5.21 ??=+= ? 機(jī)床進(jìn)給系統(tǒng)規(guī)定的精度值為 0.01mm,其一半為 0.005mm。 所以,總的變形量小于機(jī)床進(jìn)給系統(tǒng)規(guī)定的定位精度值的一半,故滾珠絲杠可 以滿足要求。 4.1.5.5 壓桿穩(wěn)定性驗算 滾珠絲杠通常屬于受軸向力的細(xì)長桿,若軸向工作載荷過大,將使絲杠失去穩(wěn) 定而產(chǎn)生縱向彎曲,即失穩(wěn)。失穩(wěn)時的臨界載荷 為KF 公式(4—8)2LEIfFZK?? 式中: I 為截面慣性矩,對絲杠圓截面 (d 1 為絲杠底徑) ;L 為)(641mI?? 絲杠最大工作長度(mm) ;E 為材料彈性模量,對鋼 E=20.6×10 4MPa; 為絲杠Zf 支承方式系數(shù)。 23 本設(shè)計中,絲杠為長絲杠,故支承方式選用兩端軸向固定,即 =4。Zf)(5.167349.36441mdI???? 所以 ???0.3920...34KF 臨界載荷 與絲杠工作載荷 之比稱為穩(wěn)定性安全系數(shù) ,如果 大于許mFKnK 用穩(wěn)定性安全系數(shù) ,則滾珠絲杠不會失穩(wěn)。因此,滾珠的絲杠的壓桿穩(wěn)定條件??Kn 為 公式(4—9)KmFn?? 一般取 =2.5~4,考慮到絲杠自重對水平滾珠的絲杠的影響可取 4。?? ???Kn 又因為面通知 ??KmKnFn??7.154.2039 所以,滾珠絲杠不會失穩(wěn)。 4.1.5.6 滾珠絲杠螺母副的選擇 根據(jù)最大動載荷選用,其代號為:1604 4.1.6 導(dǎo)軌的選型及計算 4.1.6.1 初選導(dǎo)軌型號及估算導(dǎo)軌長度 導(dǎo)軌為直線滾動矩形導(dǎo)軌,本設(shè)計中共用 2 條導(dǎo)軌,每條導(dǎo)軌用 2 個滑塊,根 據(jù)最大動載荷 C=190.89N,通過查《機(jī)電綜合設(shè)計指導(dǎo)書》表 2-16 P33,初選 2 條 導(dǎo)軌的型號都為 GDA20TW。其部分參數(shù)如下:mll60221?, 根據(jù)工作臺的長度和工作臺的行程,估算出導(dǎo)軌的長度為 2200mm。 由公式 。式中 為支座長度; 為導(dǎo)軌兩孔之間的距離??伤愕脤?dǎo)21nll??ln 軌的 =36。n 24 4.1.6.2 計算滾動導(dǎo)軌副的距離額定壽命 L 滾動導(dǎo)軌副的距離額定壽命可用下列公式計算: 滾動體為球時 公式(4—10) 350???????WCTHafFL 式中: 為滾動導(dǎo)軌副的距離額定壽命(km) ; 為額定載荷(N) ,從《機(jī)電aC 綜合設(shè)計指導(dǎo)書》表 2-10 查得 =19100N ; 為硬度系數(shù)導(dǎo)軌面的硬度為aHf 58~64HRC 時, =1.0; 為溫度系數(shù),當(dāng)工作溫度不超過 1000C 時, =1;HfTf Tf 為接觸系數(shù),每根導(dǎo)軌條上裝二個滑塊時 =0.81; 為載荷/速度系數(shù),有Cf CfWf 沖擊振動或 時, =1.5。min/60v?Wf 為每個滑塊的工作載荷(N) 。F 考慮到工作臺上各部分的重量在工作臺上的重心???635.4/.2/m 不落在中心上,而這些載荷都通過工作臺直接作用在滑塊上,故取 F=20N。 所以 50km87431.5029503?????????=L 大于滾動導(dǎo)軌的期望壽命,滿足設(shè)計要求,初選的滾動導(dǎo)軌副可采用。 4.1.7 步進(jìn)電機(jī)的驗算 4.1.7.1 傳動系統(tǒng)等效轉(zhuǎn)動慣量計算 傳動系統(tǒng)的轉(zhuǎn)動慣量是一種慣性負(fù)載,在電機(jī)選用時必須加以考慮。由于傳 動系統(tǒng)的各傳動部件并不都與電機(jī)軸同軸線,還存在各傳動部件轉(zhuǎn)動慣量向電 機(jī)軸折算問題。最后,要計算整個傳動系統(tǒng)折算到電機(jī)軸上的總轉(zhuǎn)動慣量,即 傳動系統(tǒng)等效轉(zhuǎn)動慣量。本設(shè)計需要對電機(jī)轉(zhuǎn)子,聯(lián)軸器,絲杠,工作臺進(jìn)行轉(zhuǎn)動 慣量的計算。 A) 、電機(jī)轉(zhuǎn)子轉(zhuǎn)動慣量 的折算DJ 由《機(jī)電綜合設(shè)計指導(dǎo)》表 2-18 P40 查出 =1.764㎏?cm 2DJ 25 B) 、聯(lián)軸器轉(zhuǎn)動慣量 的折算LJ 選用 TL1 聯(lián)軸器 (查《機(jī)械設(shè)計實用手冊》化學(xué)工業(yè)出版 P666),843201??GB 可查出它轉(zhuǎn)動慣量為 0.0004㎏?m 2,得出 =4㎏? cm2。LJ C) 、滾珠絲杠轉(zhuǎn)動慣量 的折算SJ 1m 長的滾珠絲杠的轉(zhuǎn)動慣量為 0.94㎏?cm 2,本設(shè)計的絲杠長度 L=2000mm, 所以滾珠絲杠轉(zhuǎn)動慣量縱向: =0.94×2=1.88㎏?cm 2。SJ D) 、工作臺質(zhì)量 的折算G 工作臺是移動部件,其移動質(zhì)量折算到滾珠絲杠軸上的轉(zhuǎn)動慣量 可按下式GJ 進(jìn)行計算: 公式(4—11)MLJG20)(?? 式中, 為絲杠導(dǎo)程(cm) ; 為工作臺質(zhì)量(kg) 。0 所以 222 149.08314.0)( cmkgLJG ??????????? E) 、傳動系統(tǒng)等效轉(zhuǎn)動慣量 計算?J276891.24.081764. ckgJJGSLD ??????? 4.1.7.2、驗算矩頻特性 步進(jìn)電機(jī)最大靜轉(zhuǎn)矩 是指電機(jī)的定位轉(zhuǎn)矩,從《機(jī)電綜合設(shè)計指導(dǎo)書》maxjM 表 2-18 中查得 。步進(jìn)電機(jī)的名義啟動轉(zhuǎn)矩 與最大靜轉(zhuǎn)矩j???92.3ax mqM 的關(guān)系為:maxjM 公式(4—12)maxjq?? 由 =0.707 得, mMq????7.2930. 步進(jìn)電機(jī)空載啟動是指電機(jī)在沒有外加工作負(fù)載下的啟動。步進(jìn)電機(jī)所需空載 26 啟動力矩可按下式計算: 公式(4—13)0MKfaKq?? 式中: 為空載啟動力矩(N?cm) ; 為空載啟動時運動部件由靜止升速q kaM 到最大快進(jìn)速度,折算到電機(jī)軸上的加速力矩(N?cm) ; 為空載時折算到電Kf 機(jī)軸上的摩擦力矩(N?cm) ; 為由于絲杠預(yù)緊,折算到電機(jī)軸上的附加摩0 擦力矩 (N?cm) 。 有關(guān) 的各項力矩值計算如下:KqM A)加速力矩 公式(4—14) 360 102max2axpbKvntnJ???????? 式中: 為傳動系統(tǒng)等效轉(zhuǎn)動慣量; 為電機(jī)最大角加速度; 為與運動部?J?maxn 件最大快進(jìn)速度對應(yīng)的電機(jī)最大轉(zhuǎn)速;t 為運動部件從靜止啟動加速到最大快進(jìn) 速度所需的時間, 為運動部件最大快進(jìn)速度; 為初選步進(jìn)電機(jī)的步距角;maxvb? 為脈沖當(dāng)量。p?in/20361.980maxrvnpb???? cmtJMKa ?????? 13.82.0437.22ax? B) 空載摩擦力矩 公式(4—15)iLfGkf??20?? 式中: 為運動部件的總重量; 為導(dǎo)軌摩擦系數(shù); 齒輪傳動降速比; 為f? i? 傳動系數(shù)總效率,取 =0.8; 為滾珠絲杠的基本導(dǎo)程。0L 27 cmMkf ?????120.8.0143259. C) 、附加摩擦力矩 公式(4—16)??200???iLFYJ 式中: 為滾珠絲杠預(yù)緊力; 為滾珠絲杠未預(yù)緊時的傳動效率,現(xiàn)取YJ 0? =0.96。0 于是 ??cmM??????04681.9.18.04325720 所以,步進(jìn)電機(jī)所需空載啟動力矩: cKfaKq ???296.8041.2.10 初選電機(jī)型號應(yīng)滿足步進(jìn)電機(jī)所需空載啟動力矩小于步進(jìn)電機(jī)名義啟動轉(zhuǎn)矩, 即 mqKM? 從上式可知,所選電動機(jī)初步滿足要求。 4.1.7.3、啟動矩頻特性校核 步進(jìn)電機(jī)啟動有突跳啟動和升速啟動。突跳啟動很少使用。升速啟動是步進(jìn)電 機(jī)從靜止?fàn)顟B(tài)開始逐漸升速,在零時刻,啟動頻率為零。在一段時間內(nèi),按一定的 升速規(guī)律升速。啟動結(jié)束時,步進(jìn)電機(jī)達(dá)到了最高運行速度。 查看《機(jī)電綜合設(shè)計指導(dǎo)書》圖 2-21 P42,從 90BF001 啟動矩頻特性圖中, 可查得: 縱向:空載啟動力矩 = 對應(yīng)的允許啟動頻率 。查KqMcm??296.8 ZyqHf250? 《機(jī)電綜合設(shè)計指導(dǎo)書》表 2-21 P42,步進(jìn)電機(jī) 90BF001 的最高空載啟動頻 率 ,yqZqfHf??20 所以所選電機(jī)不會丟步。 4.1.7.4、運行矩頻特性校核 28 步進(jìn)電機(jī)的最高快進(jìn)運行頻率 可按下式計算:KJf 公式(4—17)PKZvf?601max? 式中: 為運動部件最大快進(jìn)速度。 =0.01 算得 。ax P?ZKZHf13.? 快進(jìn)力矩 的計算公式:KJM 公式(4—18)0fJ?? 式中: 為附加摩擦力矩, 為快進(jìn)時,折算到電機(jī)軸上的摩擦力矩。0 KfM 算得: 。cmMKfJ ????0.168.4120=+= 查看《機(jī)電綜合設(shè)計指導(dǎo)書》圖 2-22 P43,從 90BF001 運行矩頻特性圖中, 可知: 快進(jìn)力矩 = 對應(yīng)的允許快進(jìn)頻率 ;KJ mcN???0168.168.0 KJyf? 所以,所用的電機(jī)滿足快速進(jìn)給運行矩頻特性要求。 綜上所述,所選用的 Z 軸步進(jìn)電機(jī) 90BF001 符合要求,可以使用。 其他各軸電動為:R 軸電機(jī)為 70BF001 A 軸電機(jī)為 70BF001 T 軸電機(jī)為 70BF001 4.2 調(diào)整絲杠的設(shè)計 該部件采用燕尾槽的導(dǎo)向、絲杠的旋轉(zhuǎn)來實現(xiàn)上下調(diào)整。 4.2.1 絲杠的螺紋升角的確定 由于在調(diào)整中調(diào)整絲杠要有自鎖性,因此其螺紋升角應(yīng) 小于螺旋副的當(dāng)量摩擦角(6. 5o 到 10. 5o)取絲杠的 29 螺紋升角為 3o.絲杠底下的雙推力軸承代號為 52208。內(nèi) 徑 d=30,外徑 D=68,厚度 T1=36. 圖 4-1 調(diào)整絲杠 4.2.2 絲桿穩(wěn)定性驗算 絲杠是屬于受軸向力的細(xì)長桿,若軸向工作載荷過大,將使絲杠失去穩(wěn)定而產(chǎn) 生縱向彎曲,即失穩(wěn)。失穩(wěn)時的臨界載荷 為KF 公式(4—19)2LEIfFZK?? 式中: I 為截面慣性矩,對絲杠圓截面 (d 1 為絲杠底徑) ;L 為)(641mI?? 絲杠最大工作長度(mm) ;E 為材料彈性模量,對鋼 E=20.6×10 4MPa; 為絲杠Zf 支承方式系數(shù)。 本設(shè)計中,絲杠為長絲杠,故支承方式選用兩端軸向固定,即 =0.25。Zf)(25.16430.6441 mdI???? 所以 ???4.18052.60.2KF 臨界載荷 與絲杠工作載荷 之比稱為穩(wěn)定性安全系數(shù) ,如果 大于許mFKnK 用穩(wěn)定性安全系數(shù) ,則滾珠絲杠不會失穩(wěn)。因此,滾珠的絲杠的壓桿穩(wěn)定??Kn 30 條件為 公式(4—20)??KmnF?? 一般取 =2.5~4,在這里取 4。???Kn 齒輪和管狀體的重量大概為 7.8×(0.7×0.7-0.6×0.6)×3.14 ×0.1=318.3kg 取 F =250kg。m ??KKnXn???389.725041 所以,調(diào)整絲杠不會失穩(wěn)。 4.3 齒輪齒數(shù)的確定與較核 4.3.1 所需的電機(jī)最大轉(zhuǎn)速和最小轉(zhuǎn)速 最短相貫線 Lmin=∏×200=628.32≈628mm(最小與最大鋼管垂直相干時的情況) 最大切割速度選 600mm/min,即每分鐘割炬繞工件轉(zhuǎn) 600/628=0.955r/min。 選大小齒輪的分度圓直徑比為 1:10 于是電機(jī)的最大轉(zhuǎn)速為 9.55r/min 當(dāng)鋼管厚度為 40mm 時,最小切割速度選 300mm/min, 兩最大鋼管 30°相干時 相貫線最長,此時電機(jī)帶上小齒輪的線速度為 150mm/min,選小齒輪的分度圓直徑 為 135mm,則電機(jī)的最小轉(zhuǎn)速為 1.111r/min。 4.3.2 齒輪的校核 大齒輪分度賀直徑 1350mm;小齒輪直徑 135mm。 選用齒輪模數(shù) m=5,大齒輪齒數(shù)為 270;小齒輪齒數(shù)為 27。兩齒輪中心距 a=675+167.5=852.5mm。 齒輪的的設(shè)計準(zhǔn)則是:保證齒根彎曲疲勞強(qiáng)度和齒面接觸疲勞強(qiáng)度. 4.3.2.1 齒面接觸強(qiáng)度計算 公式(4-21)321)(HpaamuKTAC???? 31 查<> =1 =483,K=1.2 =0.6mCaAa? =0.9 500=450Hp?? 又有 a=148.5mm. =9549P/n. w 1T2.198.032???vp =9549 19.2 /9.55=19.1N.m1T?30?140265.1485.2???a 所以齒輪符合齒面接觸強(qiáng)度要求 4.3.2.2 齒根抗彎強(qiáng)度較核 公式(4-22) 其中 =12.6,; =1; =4.0 ;mAmCFSY =3; =27 ; =150。 d?1zp? 所以齒輪符合齒根抗彎強(qiáng)度要求。 綜上所述所需要的強(qiáng)度要求。 4.4 支架的設(shè)計 4.4.1 支架的材料選取 支架的設(shè)計準(zhǔn)則:機(jī)架的設(shè)計主要應(yīng)保證剛度,強(qiáng)度及穩(wěn)定性。 由于零件的抗彎,抗扭強(qiáng)度和剛度除與其截面面積有關(guān)外,還取決于截面形狀, 合理改變截面形狀,增大其慣性矩和截面系數(shù),可提高機(jī)架零件的強(qiáng)度和剛度,從 而充分發(fā)揮材料的作用。從《機(jī)械零件手冊》查得取用矩形面,其抗彎與抗扭慣性 矩相對值較大。 綜合上述條件,立柱采用型鋼實腹柱,截面形狀為方形,選取結(jié)構(gòu)用冷彎方形 空心型鋼,這樣可以減小焊縫和避免焊縫受到集中應(yīng)力。 3211)( FpdFSmn zKTu????8530672..n ??? 32 由<>(軟件版)查得國標(biāo)為:GB/T 6728—1986 一般鋼號為 Q235-A,20 或 16Mn 等,其力學(xué)性能與化學(xué)成分應(yīng)符合: GB/T 700,GB/T 699 和 GB/T 1591 的規(guī)定。 曲部分的內(nèi)弧半徑 <235, t<4.0,時 r<1.4t, 4.08h。 第二次熱處理 >48h,250oC 出爐,保溫冷卻(525±25oC)>8h 初步選定支架的主要尺寸如下圖: 4-3 V 型支架 第 5 章 控制系統(tǒng)設(shè)計 5.1 系統(tǒng)方案設(shè)計 34 經(jīng)初步分析,相貫線切割機(jī)的伺服系統(tǒng)的負(fù)載不大,精度要求不高、可采用 開環(huán)控制。一般來講,開環(huán)伺服系統(tǒng)的穩(wěn)定性不在問題,設(shè)計時應(yīng)主要考慮滿足 精度方面的要求。 5.1.1 行元件的選擇 在選擇執(zhí)行元件時要綜合考慮負(fù)載能力、調(diào)速范圍、運行精度、可控性、可 靠性以及體積、成本等多方面要求。開環(huán)伺服系統(tǒng)中可采用步進(jìn)電動機(jī)、電液脈 沖馬達(dá)、伺服閥控制的液壓缸和液壓馬達(dá)等作為執(zhí)行元件。其步進(jìn)電動機(jī)應(yīng)用最 為廣泛。一般情況下就優(yōu)先選用步進(jìn)電動機(jī)。故初選步進(jìn)電動機(jī)為系統(tǒng)的執(zhí)行元 件。由微機(jī)控制步進(jìn)電機(jī)的輸入頻率,來控制電機(jī)的輸出轉(zhuǎn)速,從而實現(xiàn)割炬槍 的無級調(diào)速。 5.1.2 機(jī)構(gòu)方案的選擇 傳動機(jī)構(gòu)實質(zhì)上是執(zhí)行元件與執(zhí)行機(jī)構(gòu)之間的一個機(jī)械接口,用于對運動和 力進(jìn)行變換和傳遞。步進(jìn)電動機(jī)輸出的是旋轉(zhuǎn)運動,用于將旋轉(zhuǎn)運動轉(zhuǎn)換成直線 運動的傳動機(jī)構(gòu)主要有齒輪齒條和絲杠螺母等。前者可獲得較大的傳動比和較高 的傳動效率,所能傳遞的力也較大,但高精度的齒輪齒條制造困難,且為消除傳 動間隙而結(jié)構(gòu)復(fù)雜;后者困結(jié)構(gòu)簡單、制造容易而應(yīng)用廣泛,是伺服系統(tǒng)中的首 先傳動機(jī)構(gòu)。故初選絲杠螺母作為傳動機(jī)構(gòu)。傳動方式采用絲杠旋轉(zhuǎn),絲杠螺母 帶動工作臺直線運動,利用調(diào)節(jié)絲杠的轉(zhuǎn)速來控制割槍的速度。當(dāng)電動機(jī)與絲杠 電心距較大時,可采用同步齒形帶傳動。 5.1.3 機(jī)構(gòu)方案的選擇 35 執(zhí)行機(jī)構(gòu)是伺服系統(tǒng)中的被控對象,是實現(xiàn)實際操作的機(jī)構(gòu)。執(zhí)行機(jī)構(gòu)方案 的選擇主要是導(dǎo)向機(jī)構(gòu)的選擇,即導(dǎo)軌的的選擇。導(dǎo)軌主要有滑動和滾動兩大類。 其中滾動直線導(dǎo)軌承載能力大,剛性強(qiáng),壽命長,傳動動平穩(wěn)可靠,且具有自調(diào) 整能力。故初選滾動直線導(dǎo)軌為導(dǎo)向機(jī)構(gòu)。 5.2 控制系統(tǒng)的選用 機(jī) 電 一 體 化 控 制 系 統(tǒng) 由 硬 件 系 統(tǒng) 和 軟 件 系 統(tǒng) 兩 大 部 分 組 成 .本控制系統(tǒng)選 用我國國內(nèi)自主研發(fā)生產(chǎn)的數(shù)控裝置---“世紀(jì)星”HNC-21 系列數(shù)控裝置(HNC- 21M)。 數(shù)控裝置的簡介: “世紀(jì)星”HNC-21 系列數(shù)控裝置(HNC-21M) 采用先進(jìn)的開放式體系結(jié)構(gòu), 內(nèi)置嵌入式工業(yè) PC 機(jī),高性能 32 位中央處理器,配置 7.5”彩色液晶顯示屏和 標(biāo)準(zhǔn)機(jī)床工程面板,集成進(jìn)給軸接口、主軸接口、手持單元接口、內(nèi)嵌式 PLC 接 口、遠(yuǎn)程 I/O 板接口于一體,支持硬盤、電子盤等程序存儲方式以及軟驅(qū)、以太 網(wǎng)等程序交換功能,主要適用于數(shù)控車、銑床和加工中心的控制。具有高性能、配 置靈活、結(jié)構(gòu)緊湊、易于使用、可靠性高的特點。 1.最大聯(lián)動軸數(shù)為 4 軸。 2.可選配各種類型的脈沖式、模擬式交流伺服驅(qū)動器或步進(jìn)電機(jī)驅(qū)動器以及 H
收藏