購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
小型柴油機高速化和大功率化的發(fā)展
D.Broome
Ricardo & Co.Engineers(1927) Ltd.(England)
筆者所在公司長期關注小型高速柴油機發(fā)展,特別是其燃燒系統(tǒng)的發(fā)展。僅管這類機型在北美大陸并不普及,但在歐洲和日本的產量以及使用量卻相當大,約有數百萬臺。典型的機型是自然吸氣四缸柴油機,每缸排量為25-35 in3 (400-600cm3),工作轉速為4000-5000 rpm,活塞限速在2400ft/min(12m/s)。
在warren的美國軍方坦克研發(fā)中心(USATAC),Mich提議開發(fā)一種符合軍方要求的大功率輕型動力裝置,并且要求能達到前所未有的轉速以實現性能的提升,而不是僅僅增加渦輪增壓器。在這個情況下,進氣系統(tǒng)和燃燒系統(tǒng)的研究就被搬上了前臺。這項計劃制定了工作的執(zhí)行方案,包括設計,制造和在特定單缸機上的初步實驗。
項目
這個項目的技術要求最后由USATAC制定,其在大概的內容如下所述:
1. 設計,采辦,制造和測試一臺缸徑為3.5英寸(88.9mm)的單缸機。要求以最高轉速工作,至少5000 rpm。以分離的空氣供給系統(tǒng)的對渦輪增壓狀況進行模擬。
2. 改進這臺單缸試驗機,以實現其預定的性能指標,使得相對應的軍用四缸機能夠產生 1 bhp/in3 (45.5kW/cm3)的功率以實現單位質量功率3.5 lb/bhp (2.13kg/kW)。
3. 設計將不受傳統(tǒng)觀念影響,以最小化機械負荷和熱負荷為目標。
4. 最初的燃料要求以CITE-R fuel (MIL-F-46005A (MR))為標準。一開始,專門針對航空汽油進行研究,但后來這項要求有所放寬。
5. 如果可能的話使用MIL-L-2104B規(guī)格的潤滑油。
6. 項目的最后階段包括一臺軍用四缸機的設計,其中包含了對單缸機的測試。
7. 對于多缸機的啟動,怠速和小負荷工況的工作性能必須不能被忽視。
初步設計方案
一個對缸徑尺寸和功率輸出指標的試驗可以很快地顯示出引擎最高轉速的極限。從最小轉速5000 rpm開始,曲線清楚地顯示出轉速在6000 及以上時,這些活塞的運動速度與賽車引擎的相當。通過增加轉速來減小平均有效壓力的意義是重大的,fmep(這些估計都是根據筆者公司的一些過去的數據的分析,其中大部分被概括在圖1)的增加對指示平均有效壓力的減小幾乎沒有反饋。幾年來,自然吸氣柴油機被要求嚴格工作在冒煙界限以內,因此其指示平均有效壓力只能提高到145lb/in2 (1000kPa);因此,渦輪增壓的測量方面有了一些要求。高速和高引擎磨擦帶來的惡果就是燃料的消耗。表格1中清楚地顯示了bsfc對曲線的迅速惡化,效果并不比汽油機來的好,所以會損失壓縮做功循環(huán)的主要利益。根據這種情況,就計劃將轉速限定在6000 rpm。
主要的表現問題在引擎的設計中所要求的可以被概括為以下幾項:
引擎的進排氣—— 根據以往在高速小型柴油機上的經驗表明,進排氣性能是活塞高速化時限制指示平均有效壓力的重要因素。因此,需要提供足夠大的充氣系數使得活塞速度能達到3500 ft/min (17.8m/s),比現有的柴油機水平高出50%。這就必然要求設計脫離傳統(tǒng)的氣缸設計,包括更傾向于多氣門的設計(表2);渦輪增壓帶來微小的變化,比如更高的進氣溫度,最小的壓力損失和減小體積功率的變化。
除此之外,渦輪增壓匹配要求需要被事先確定。對于車用引擎,由于對后備扭矩的需要,通常傾向于在額定的轉速前提下,最小化有效的推進力。因此大尺寸的排氣門并不被強求。另外,絕對短的廢氣排放系統(tǒng)要求排氣速度盡可能低,排氣門面積與進氣門相當。
同時需要考慮的是氣門開啟時間的設置。在進氣口,高速度通常聯(lián)系著較大的氣門關閉延時角,在柴油機里,一般為提前下止點45度,這將會連續(xù)地影響起動性能,同時也犧牲一定的低速性能,更大程度上影響到引擎的自然扭矩儲備。對于排氣,因為渦輪增壓的需要,排氣門在做功沖程結束前就要開啟,在高轉速下提前60度開啟并沒有什么優(yōu)勢。較大的氣門重疊角可以減少廢氣量和降低排氣系統(tǒng)各組成部分的溫度,同時可以最小化高轉速時充氣系數的降低程度。充氣系數與氣體的流動有關。而由于活塞和氣門間余隙容積產生的機械問題將會對燃燒系統(tǒng)有負面的影響。
燃燒問題——當引擎達到預定轉速時,點火延時期的持續(xù)時間將是一個基本的問題。點火延時持續(xù)時間將是在引擎正常工作時影響轉速,壓縮條件和燃油噴射提前角的重要因素,而特殊的燃燒室結構將會是另一個影響因素。CITE-R燃油的最小十六烷值為37,但其已測定的數據只適用在低速狀態(tài)下,并不能直接應用在6000 rpm 的高轉速引擎的預測中。然而,可以從這些有用的數據中,得到小型高速引擎在使用輕油(十六烷值為55)時,以最小可起動壓縮比時的表現,估測如表1所示(更高的壓縮比會導致額外的熱損失和最大氣缸壓力的增長)。這些數據指出在6000 rpm時使用CITE燃油是可行的。但是在低負荷的情況下,要求入口溫度保持在室溫下,這對于采用渦輪增壓的機型是不可能的。
表 1 – 達到要求轉速時發(fā)動機的速度特性*
發(fā)動機轉速
5000 6000 7000
平均活塞速度, ft/min (m/s) 過 2915 3500 4085
(1480) (1775) (2070)
要求的bmep 轉速, lb/in2 (kPa) 158 132 113
(1090) (910) (780)
預測多缸機的 fmep, lb/in2 (kPa)** 72 83 95
(495) (575) (655)
所有發(fā)動機的Imep, lb/in2 (kPa) 230 215 208
(1585) (1485) (1435)
多缸機的Bsfc , 采用0.33 lb/inp.h(0.20 kg/kW.h), 0.48 0.54 0.61
Lb/inp.h (lb/bhp.h (kg/kW.h) (0.29) (0.33) (0.37)
* 2-1/2×3-1/2 in (88.9×88.9 mm) 缸徑的發(fā)動機在 1 bhp/in3 (45.5 kW/cm3) 功率輸出。
** 見圖2
燃油噴射時間由燃油噴射系統(tǒng)依靠后置式裝置控制,但是在現實中,開發(fā)新的噴射系統(tǒng)以替代傳統(tǒng)的脈沖式噴油泵系統(tǒng)是不可能的。在一個固定的節(jié)流孔噴口,需要考慮的是如何在6000 rpm 下,以全負荷運轉時能有60mm3 的噴射量,這就要求能提供合適的特性曲線,調整壓縮比在11:1。直噴式的燃燒系統(tǒng)在高轉速下延長噴射時間,其結果是很嚴重,這就不得不采用固定的節(jié)流孔噴口。另外一個附加的問題就是大負荷下DI系統(tǒng)工作的困難性,特別是在更高的冒煙界線空燃比情況下,要求更大的功率以達到預定的指標。在Ricardo的早期研究中已經表明,基于慧星漩渦式的燃燒室系統(tǒng)(見表3),工作在4500 rpm 的小型高速民用引擎通過改進可以達到特殊應用的目的。僅管有獨立的起動裝置和完全多油路系統(tǒng),但是主要可預見的問題是在高熱負荷的情況下,并沒有合適的DI系統(tǒng);盡管如此,隨著可應用于多缸機的內置式輔助裝置的應用,以及CITE燃油的限制,這些問題都不會很嚴重。
表 2 – 發(fā)動機進排氣系統(tǒng) - 氣門面積和限制速度*
合適的氣缸蓋布置的形式 氣門面積比例
相對于缸徑的百分比 結果
進氣 排氣 Total rpm,max
傳統(tǒng)的兩氣門自然進氣 18 12 30 3900
平頂燃燒室四氣門渦輪增壓 17 17 34 4000
斜屋頂三氣門渦輪增壓 21 21 42 5000
斜屋頂四氣門渦輪增壓 25 25 50 6000
* 3-1/2 in (88.9 mm) 發(fā)動機行程. 受限制的平均進氣氣體速度: 自然進氣,210 ft/s (64 m/s); 渦輪增壓, 230 ft/s (70 m/s).
在項目開始的時候,一些DI系統(tǒng)被拿來做選擇,除此之外有一臺4000 rpm的試驗用單缸機以及相配套的已設計完成的DI系統(tǒng)版本。在那段時期,受制于噪聲,煙氣和獨特的廢氣排放法規(guī),分離式燃燒室受到更多的重視,而在DI系統(tǒng)上的試驗工作并沒有像現在一樣被提上議程。
引擎的磨擦問題——與同樣尺寸大小的常規(guī)民用多缸高速渦輪增壓柴油機相比,很明顯,通過提高轉速和活塞速度可以顯著提高fmep。在表1中可以清楚地看到,如果想到同時達到功率輸出和燃油消耗率兩項指標是一個很大的問題。圖2所示是一臺典型的民用引擎fmep/速度曲線圖,其估測的fmep是從高速多缸機的試驗中獲得的。在這個測試中,一些柴油機機構基本的機械磨擦的增值已被假定,直到渦輪增壓裝置增加氣缸壓力和采用更大的軸承以獲得可接受的可靠性。另外,進排氣的泵氣損失將會大幅增加高速機的?fmep,除非能夠設計一個合適的氣門直徑并長期保持不變。
表3 – 燃燒室特性
慧星式 直噴式
漩渦式燃燒室 燃燒室
特殊轉速 (受限于 A/F) 好 失敗
燃燒控制和機械負荷 好 差
熱負荷和熱損失 差Poor 好
獨立起動性 差Poor 好
采用加熱塞的起動性能 好Good ----
軸針類型 針式 多孔式
排放 (NOx) 好Good 差r
多燃料性能 差 失敗
按照汽油標準,該機型的單位機械效率將會很低,但經驗告訴我們,盡管在細節(jié)方面的設計可以獲得額外的收益,但是較低的水平仍然會隱藏在設計的規(guī)格里。
單缸試驗機
基于對外形的考慮,單缸試驗機的最后設計被確定,其基本尺寸為:缸徑×沖程: 3-1/2 in ф×3-1/2 in (88.9mmф×88.9mm);正常滿負荷轉速范圍,3000-6000 rpm;最高氣缸爆發(fā)壓力,2500 lb/in2(17.3Mpa)。
氣缸爆發(fā)壓力也許比傳統(tǒng)標準定得稍高,過去的經驗顯示,設計如此一臺引擎是很危險的,所以在試驗過程中會造成不可遇見的局限性。事實上,最初可正常工作的DI版本的設計為3000 lb/in2(20.7Mpa),但在隨后的慧星版本中有一定的減小。
慧星渦旋燃燒室引擎的布局如圖3-5所示,整機的主要部件如圖6所示,如下所述:
曲軸箱——曲軸箱及其后蓋由球墨鑄鐵(BS 1452:1961,Grade 14)鑄成,兩者通過螺栓聯(lián)接。曲軸箱延用Ricardo設計的E/6 可變壓縮比汽油機的曲軸箱,這就導致了燃燒室如E/6型機那樣,置于曲軸箱前端。有三個主要軸承,全部采用鉛青銅合金襯套,中間一個軸承采用止推軸承。后軸承作為曲軸的延長軸的固定軸承,可以進行調節(jié)軸向位置,所以不能分擔中間軸承承受的燃燒負荷。
曲軸——曲軸由一次鍛造成形的滲氮鋼,BS 970:1955 En 40c。平衡重為整體式,只用來平衡旋轉慣性力,同時設有平衡一階和二階往復慣性力的平衡軸。所有主軸頸和曲柄銷表面滲氮處理,三處主軸頸直徑,從前到后,分別為3,3,and 2-3/8 in (76.2,76.2,and 60.4 mm),曲柄銷直徑為2-5/8 in (66.6mm)。
連桿——為獲得較好的模具和避免多余的費用開支,連桿的方案從民用機型上進行選擇,最后選定了福特 2700 系列柴油機的連桿。
連桿大頭可承受的最大氣缸爆發(fā)壓力為3000 lb/in2,連桿小頭則通常不被考慮。因此在將該型連桿運用到慧星漩渦燃燒室版本的引擎上時,要求其最大氣缸爆發(fā)壓力為 2500 lb/in2。軸承采用2700系列引擎上的型號,由15%的錫鋁合金做成襯套,而小頭襯套采用預制的鋁青銅合金。除了在加工時要求仔細拋光和檢驗連桿質量外,連桿小頭應盡可能減小寬度,以減小活塞銷座和活塞銷襯套的熱負荷和慣性負荷。加在連桿大頭固定螺栓上的扭矩高于傳統(tǒng)的標準,以防止在6000 rpm時,當活塞到達排氣上止點時螺栓帽脫落。
軸承的提供者The Glacier Metal Co.Ltd. 出了計算機計算的結果,表明所提供的軸承的工作范圍是合適的,盡管當高速時連桿大頭將承受相當大的慣性力。
活塞和活塞銷——活塞由含硅13%的鋁合金整體鑄造而成,性能為BS 1490:1970 LM13WP,在斜屋頂燃燒室的有角度的一面上開有淺槽和雙凹槽?;钊捎脙傻罋猸h(huán),第一道為桶形環(huán),第二道為錐形的扭曲環(huán);油環(huán)也作相應的設置。為提高耐磨性,在環(huán)的磨擦面上鍍銅。不鍍鉻是因為鍍銅的環(huán)性能已經足夠了。
雖然活塞高度太大(相對于柴油機的普遍標準)會使設計合適的活塞,活塞環(huán)和缸套變得困難,但是在這個機型里活塞仍按照實際需要被特意設計成較高的高度。盡管如此,這一些小問題根據被經驗所克服。
活塞的冷卻和連桿小頭的潤滑是通過一個安裝在曲軸箱內的固定噴嘴定時噴射實現的。這個方法可以取消連桿大頭軸瓦處油槽的設計,從而使軸瓦完整。兩個活塞的改進,盤式冷卻系統(tǒng)的安排,可形變式核心的設計都如圖所示。為獲得可行的冷卻方案,對活塞環(huán)帶的盤式冷卻系統(tǒng)進行設計,承受從活塞頭部傳過來的氣體壓力的支桿被設計得近可能細,在這個區(qū)域里允許有額外的扭曲。形變式核心有著卓越的性能。
活塞銷材料為淬火鋼,直徑為1-3/8 in (34.9mm):
缸套和水套—因為使用漩渦式燃燒室系統(tǒng),在局部有較高的熱傳遞速率,伴隨有 2500 lb/in2的氣缸最大爆發(fā)壓力,使得在設計濕缸套的時候有相當的難度。根據傳統(tǒng)的鐵制氣缸套厚度設計,則會使第一道環(huán)反向點的表面溫度額外地上升。最后方案選擇使用鋼制氣缸套,在內壁鍍上一層厚度為0.0015 in (38μm)的堅硬的鉻合金。越向頂部,氣缸套越薄,使得溫度能得以控制,但是較小的厚度將會削弱缸套的剛度,不利于抵御有水一側的沖擊。缸套的頂端被折邊以適當的過盈配合安裝在氣缸上部,下端裝有水封安置在曲軸箱頂部;其徑向定位由曲軸箱內的氣缸螺栓提供,水封為通常的橡膠環(huán)。
氣缸蓋總成——氣缸蓋以及連接架,是發(fā)動機最復雜的部件,現在依舊有不少設計問題有待解決。如何設計合適的氣門和氣道成為其具有相當難度的核心問題。在傳統(tǒng)的缸徑為5-1/2 in的柴油機中為氣門留有3-1/2 in的直徑位置,這樣可以為漩渦式燃燒室系統(tǒng)的活塞區(qū)域提供高達5.7 ihp/in2 (0.66 indicated kW/cm2)的冷卻能力。
僅管四氣門的布置在其它地方得到了充分的驗證,但是在這個慧星漩渦式燃燒室做四氣門的布置并不十分恰當,因此最后選定了三氣門的布置方案。斜屋頂的頭部表面積是很重要的,一部分留給必要的氣門面積,但更多是用來預留額外的散熱空間。通常情況選擇使用兩個排氣門,以減小它們各自的尺寸,同時使用一個進氣門。但是最終一個相反的方案被選定,同圖8所示。一對進氣門布置在中央,因為考慮到如果采用一對排氣門的話,較長的排氣管會對燃燒室頂部強烈地加熱,對排氣門設計不利。不對稱的燃燒室和氣門布置以前也被研究過,但因其不能顯示出實際的優(yōu)勢和與多缸機的要求不符合而被舍棄。在這個設計中,通過將加熱塞置于燃燒室較低的位置,采用所謂的延展式外形的慧星燃燒室以最小化空間。
為了冷卻進氣門、排氣門以及兩者之間的橋梁結構,鉆孔是不可避免的,這就需要對燃燒室與水套之間的金屬層厚度做精確的控制,并且要求水套的表面保持清潔。漩渦燃燒室的加熱塞置于窄處,由Nimonic 80A合金精密鑄造而成,是一個輕型的定位于銅襯墊的上邊緣口,根據經驗這樣的強化在一些地方需要直接冷卻,而不像民用發(fā)動機那樣存在一個間隙用來迅速暖機。在燃燒室上部有一個由球墨鑄鐵制成的噴嘴。一個傳感器的觸點置于氣缸頂部的后端。
輕型合金機座直接安裝在缸套的上邊緣,沒有用到襯墊,通過8個單頭螺柱垂直夾緊在水套的上邊緣。根據經驗,燃氣的沖擊不構成問題,設計的單頭螺柱滿足1.4倍于滿負荷燃氣沖擊的要求。
進排氣的頂置凸輪軸采用11個螺栓,通過三角架布置在頂部,以確保安全。凸輪軸通過搖臂驅動氣門的開啟和關閉,氣門間隙的調節(jié)通過對氣門挺柱頂端的墊片來實現。凸輪軸對于進氣門關閉和排氣打開的時刻的控制是可行的。進氣門的材料采用鋼BS 970:1955 En 59 “XB”,對于單獨的排氣門采用特殊的21-4/n奧氏體鋼,但根據經驗,排氣門需要承受高溫,在頭部會發(fā)生穴蝕現象,因此在頭部采用Nimonic 80合金,并鑲有鉻合金。
為了實現多缸機在質量上的指標,整機廣泛采用鋁合金材料,包括氣缸蓋和機體部分。氣缸蓋初始設計采用BS 1490:1970 LM25WP Al-Mg-Si合金,但該鑄件卻被證實在進氣口附近存在多孔滲水現象。因此在鑄造方面做了相關改進,材料也被改成高溫RR 350 Al-Cu-Ni-Co-Sb-Zr 合金。之后鑄件就再也沒有出現過大的松孔,但隨之而來的是進排氣門之間的橋梁結構出現破裂現象。冶金實驗證明微孔收縮和薄膜都是在鑄造中形成的,但是這些缺陷是非常嚴重的,通過一對固定的熱電偶對稱置于橋梁結構不同深度處,以選擇合適的插入點的方法,因為物理上的原因在這里是不適用的。如表4所示的這些實驗中,證實按照最初的設計程序計算得出來的數據,如圖4所示,采用Lm25WP 的合金時,材料處于正常工作范圍的邊緣,采用RR 350時材料失效并不僅僅是熱疲勞影響。在對設計做了一定的修改后,加強了橋梁結構的冷卻和強度,同時減小了進排氣門的直徑,分別為1.050 in (26.7mm)和1.505 in (38.2mm),在室溫下經過機械負荷測試時,得知缸蓋甚至只是在裝配后就會發(fā)生一定的扭曲變形。微型應變儀被應用在這些橋梁結構,氣門座,氣缸蓋總成,裝配,整機的扭矩和氣缸體所承受的氣缸爆發(fā)壓力是很合適的。測定的結果,與一臺相似的技術成熟的,采用鋁制氣缸蓋的民用兩氣門柴油機相比較,比較結果見圖9,證明在冷態(tài)時兩種機型的橋梁結構都存在明顯的預應力,但是在發(fā)動機工作會被熱應力負荷所抵消。對RR 350材料的冷態(tài)結果分析表明,在溫度上升后,有足夠的安全系數保留,也沒有明顯的缺陷問題。
表4 – 氣缸頂部中央的熱流和溫度*
估測 標準
局部熱流, 518,000 475,000
Btu/ft2.h (MW/m2) (1.63) (1.5)
缸壁一側的溫度 504 525
F (C) (262) (279)
推斷
* 轉速: 215 lb/in2 (14.85 bar) at 6000 rpm.
現在設計的氣缸蓋,已經證明其失效時間為早期設計的2倍,可以說以上所說的問題都已經克服,一個可行的氣缸蓋設計已經成形。
正時驅動平衡齒輪——一個后置蓋將整個齒輪傳動系統(tǒng)罩住,下方是兩個主平衡軸傳動齒輪和兩個二級兩倍速的平衡軸傳動齒輪,在上方是一個一倍的減速齒輪。平衡軸位于曲柄行程的下方。平衡軸以鋼棒材為毛坯,一端磨削后壓入薄鐵管,使其有光滑的外表面以減少動力損失和機油的攪動。從定時齒輪箱伸出的半速輸出軸前端與噴油泵相聯(lián),后端與齒形帶輪聯(lián)接。
兩根頂置凸輪軸通過1:1的同步帶輪與位于缸蓋總成齒輪的副軸相聯(lián)接;這根副軸有一定的撓性,以允許將來需要改進時,燃燒室的改變和氣門位置的布局能夠得以實現。深溝球軸承被應用于正時傳動系統(tǒng)。
燃油噴射系統(tǒng)——在更早的時候,就開始采用傳統(tǒng)的高壓燃油噴射泵系統(tǒng),之后又開始對適用在本機型,轉速在3000 rpm 的噴射泵的研究。該工作單元是從一臺適用于3000 rpm,兩沖程三缸機的噴油泵上改進而成的,其單獨的動力學原理需要在高速下得以驗證。為獲得足夠高的噴射速度和噴油量,一種新的凸輪軸被開發(fā)出來,這樣三個單獨的工作單元可以相互聯(lián)系起來。噴油泵通過一個手動的調速器控制,以使得在調節(jié)噴油時刻時不用停機。
在噴油泵附近靠近水套的地方允許有一短的高壓油管,而傳統(tǒng)的S號的軸針式噴嘴正好合適。民用發(fā)動機上的軸針熱屏蔽裝置可以用來保持軸針尖較低的溫度。
冷卻回路——通過一個外置的電機驅動冷卻液高速流動,同時在主循環(huán)上還安有一流量計。引擎的冷卻回路是一個平行系統(tǒng),冷卻液同時從幾個入水口進入。在氣缸水套底部開有兩個互不干涉的孔,冷卻液通過這兩個孔經過缸套和缸套邊緣的壓邊處。然后冷卻液經12個在缸蓋和水套之間的缸蓋熱圈上的孔進入氣缸蓋。另一條水路是在氣缸頂部的橋梁結構上鉆有四個孔,冷卻水流在進入主循環(huán)前先流經進氣門周圍的橋梁結構。缸蓋通過一個單獨的排水通道與排氣門相聯(lián)。
潤滑油路——同樣,一個單獨的機油泵用來提供潤滑油,以滿足對潤滑和活塞冷卻的要求;流量計安置在一條獨立的通路上。所有的潤滑油經過機體內分離的鉆孔和外部管道相聯(lián),經驗表明在典型的發(fā)動機上,這樣的布置可以最大程度上減少成本。低壓供油給氣門結構。
機油箱是干式的,同時有一定的加壓以防止機油浸到平衡軸上。
發(fā)動機性能
對引擎的燃燒系統(tǒng)和噴射系統(tǒng)的改進并不是同時進行的,而且對發(fā)動機的進氣系統(tǒng)并沒有做最優(yōu)化設計。因此,這里所引證的數據只是表明指標要求能夠達到,而不是為了對發(fā)動機性能做最優(yōu)化設計。當然,更多的成果也是被期待的,特別是在超過轉速范圍時的平衡性和在超高速下燃燒系統(tǒng)的機械和熱負荷數據。
測試安裝——發(fā)動機與電子應變測量計相聯(lián),也可與駕駛單元相聯(lián)接。冷卻液出口和潤滑油入口溫度可以通過水冷散熱交換器自動控制。壓縮空氣由獨立的空氣壓縮機提供,中間聯(lián)有一個ALCOCK滯流空氣流量計,另有一個中冷器,用來控制進氣溫度和減少沖擊效應。排氣管通過一根短管與一個膨脹室相連,在出口處壓力得到控制;在對發(fā)動機進排氣系統(tǒng)的增壓模擬中,一個氣室或一排管道被用來進氣。其測試安裝結果如圖10所示。
通常的測試方法是,通過改變噴油量,控制引擎工作在一定的負荷范圍以上,并保持一定的轉速,而進氣量和排氣管背壓保持與對照樣機相同。這樣并不是模擬增壓發(fā)動機工作在相同的負荷范圍內,而是通過這些數據大致地預測增壓發(fā)動機的工作狀況。根據表現出來的發(fā)動機的特征結果,在相同的進氣量和背壓的情況下,對中斷結果和動力磨擦的情況的分析,允許對多缸機指標的推測。
由于CITE燃料在英國供給困難,USATAC贊成使用本質上相同的航空用低烷值燃油(D.Eng R.D.2486),其十六烷值為37。一些實驗也使用C.I.油料,是一種本質上與ASTM Grade 2-D柴油相似的燃油,其十六烷值為55。
測試工作——對這臺機械部分改進的新型的發(fā)動機,大部分測試工作表明其完全達到了215 lb/in2 (1485 kPa) imep的指標要求。一些數據也表明,在達到滿負荷工作運轉時,轉速會降到3000 rpm。
在開始測試時,在6000 rpm的轉速下其冒煙界線是可以接受的,但在排氣管邊緣的熱電偶測得的排氣溫度過高,達到了1650F (900C)。這是由于非常長的噴射時間和延遲燃燒造成的。對燃油噴射系統(tǒng)的改進減低了噴嘴的噴射速度,但是只是在名義上有大量的減少,在噴嘴口處,只有20%的減少量在噴射時間內。對噴射系統(tǒng)的簡單計算出現另人失望的結果是自然的。因此就需要像一開始一樣,對高排氣溫度時固有的熱力問題在高排氣溫度進行研究和尋找設計解決方案。
在負荷范圍內,在進氣壓縮比為1.9和6000 rpm時,兩個燃料的性能如圖11所示,而其典型的氣缸爆發(fā)壓力和軸針抬起高度如圖12所示。從以上數據可得知,增壓對于兩種燃料達到性能指標都是非常有效的,其在冒煙邊界的A/F值為0.055。這些值得注意的數據結果證明,最后燃油注入燃燒室的時刻為40 deg atdc,這可以歸功于慧星燃燒系統(tǒng)出色的混合氣能力,特別是在活塞凹陷處非常有效的氣體流動。在使用輕油時,慧星燃燒室可以達到最適宜的起動性能,但在使用對點火要求更低要求的航空低辛烷值燃油時,它就不可能達到在相同的進氣壓力下相同的燃燒效果,不可避免地會有些損失。在小負荷時不能發(fā)火的問題同樣也在使用航空低辛烷值燃油時體現出來,增加一定的進氣溫度可能成為必要的措施—多缸機使用一根進氣總管—采用對冷卻液特殊控制的二次冷卻器成為必要的手段。
從氣缸爆發(fā)壓力圖表上可得知,氣缸最大爆發(fā)壓力在高速的情況下,可以測得其值在滿負荷時為1475 lb/in2 (10.2MPa)。
在恒定的進氣壓力和最適宜的噴油時刻時,使用輕油的速度曲線如圖13所示,噴油時刻的改變如圖11所示。應該指出在燃燒室低轉速輸出時相對于高轉速下的要求有所降低,盡管隨著更大的改進也會有相應的改進。現在相當小的氣門被應用,而早期的進氣門關閉時刻為40 deg abdc,其體積效率在5000 rpm時下降,但是多缸機對扭矩的儲備要求還是可以接受的。
多缸機的可能性
在對單缸機試驗完成時,還沒有認為值得花時間對多缸機的進行設計研究。但是,為了獲得對今后整機樣式的大致了解,一些可能的四缸機方案草圖還是有的,其前端視圖和側視圖如圖14所視。該發(fā)動機的正視圖表現了單列、干機油箱的設計,它的氣缸蓋除了采用整體式缸蓋外,本質上與單缸機的相同。渦輪增壓器安裝在飛輪上方,與進入總管和中冷器相聯(lián)接。該引擎,包括各個輔配件,包括飛輪長31-3/4 in (806 mm),高 32-3/4 in (831) mm),寬24 in (609 mm),單位質量功率為9.3 bhp/ft3 (245 kW/m3)。為了達到特定的重量要求,其干重量必需達到470 lb (213 kg)。其質量與排量比為3.49 lb/in3 (0.096 kg/cm3),而傳統(tǒng)的車用柴油機的質量與排量比為3-5 lb/in3 (0.08-0.14 kg/cm3)。
基于單缸試驗機的實驗數據,為該機型設計的制動器的性能也基本上達標了。在4000 rpm時要求有10%的扭矩儲備要求,因此,作為一臺渦輪增壓發(fā)動機,已經達到了扭矩的要求。在4000 rpm以下,供油量需要削減以保持其排煙有約5%的不透明度,這樣在低速時就可能獲得一定的性能增長。進氣壓縮比被要求在通過中冷器損失后還有2.7,其最大的氣缸爆發(fā)壓力為1950 lb/in2 (13.5 MPa)。排放情況在單缸機上并沒有做測定,但是慧星漩渦式燃燒室已經被證明其擁用極低的排放,特別是是氮氧化物方面,倘若不發(fā)火的問題能夠得到解決,那么這臺發(fā)動機滿足1975C.A.R.B的要求也就成為可能。
概括和總結
在USATAC發(fā)起的設計和測試過程中,達到高效的輸出1 bhp/in3 (45.5 kW/cm3)和低重量的柴油機的可能性也曾被研究過,采用高轉速和一般的活塞運動速度,分別為6000 rpm和3500 ft/min (17.75m/s)。預測要達到的目標是imeps達到 215 lb/in2 (1485 kPa),因此也就需要采用渦輪增壓系統(tǒng)。
在研究一開始所涉及到的三個主要問題:
1. 引擎的進排氣系統(tǒng),主要是盡可能提供比傳統(tǒng)發(fā)動機更大的氣門面積。
2. 燃燒,包括最基本的在很短的時間間隔內實現壓燃的問題,也有燃油噴射系統(tǒng)和燃燒室的選型。
3. 發(fā)動機的磨擦,對bfc的控制。
從以上幾點考慮,一個單缸試驗機的設計提了出來,包括對進排氣系統(tǒng)和燃燒等細節(jié)問題的研究。
1. 使用Ricardo設計的慧星漩渦燃燒室系統(tǒng)。
2. 采用斜屋頂燃燒室頂部設計,以便提供足夠的氣門安裝空間。
3. 雙進氣門和單排氣門設計。
4. 合理地對機械部分做出設計,以應付在特殊地試驗條件下對很高氣體爆發(fā)壓力的抵抗要求,以及設計適應高熱應力的冷卻系統(tǒng)。
測試工作表明設計的指標可以達到,盡管改進工作還沒有完成,但是試驗數據顯示進排氣系統(tǒng)和采用慧星燃燒室的燃燒系統(tǒng)可以實現轉速6000 rpm,這還是在采用傳統(tǒng)的高壓燃油噴射泵的情況下。采用CITE燃油也可能是出現這種情況的原因。
最初為軍事目的設計的,背包大小,特殊功率要求的4缸試驗機已經制造完成。
致謝
作者非常感謝文中所提及的美軍坦克研發(fā)中心在這個項目的大力支持,也很感謝他們和Ricardo & Co.對論文出版的許可。
參考文獻
1. B.W.Millington and E.R.Hartles, “Frictional Losses inDiesel Engine.” SAE Transactions, Vol.77 (1968), paper 680590.
2. C.J.Walder, “Some Problems Encountered in the Design and Development of High Speed Diesel Engines.” SAE Transactions, Vol.74(1966), paper 650025.
3. W.T.Lyn and E.Valdmanis, “The Effects of Physical Factors on Ignition Delay.” Paper 689192 presented at SAE Automotive Engineering Congress, Detroit, January 1968.
4. C.C.J.French, “Taking the heat off the Highly Boosted Diesel.” SAE Transactions, Vol.78 (1969), paper 690463.
5. C.J.Walder, “The Reduction of Emissions from Diesel Engines.” Paper 7320214 presented at SAE Automotive Engineering Congress, Detroit, January 1973.
21